1 |
SUN F D , LI W H . Saliency guided deep network for weakly-supervised image segmentation. Pattern Recognition Letters, 2019, 120, 62- 68.
doi: 10.1016/j.patrec.2019.01.009
|
2 |
HE J F, FENG J Y, LIU X L, et al. Mobile product search with bag of Hash bits and boundary reranking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 3005-3012.
|
3 |
HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[EB/OL]. [2023-08-10]. https://arxiv.org/pdf/1502.06796.
|
4 |
RUTISHAUSER U, WALTHER D, KOCH C, et al. Is bottom-up attention useful for object recognition? [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 458-467.
|
5 |
XIE C X, XIA C Q, MA M C, et al. Pyramid grafting network for one-stage high resolution saliency detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 11707-11716.
URL
|
6 |
TIAN X, XU K, YANG X, et al. Bi-directional object-context prioritization learning for saliency ranking[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C, USA: IEEE Press, 2022: 5872-5881.
URL
|
7 |
YU S Y, XIAO J M, ZHANG B F, et al. Democracy does matter: comprehensive feature mining for co-salient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 979-988.
URL
|
8 |
YU S Y , ZHANG B F , XIAO J M , et al. Structure-consistent weakly supervised salient object detection with local saliency coherence. Artificial Intelligence, 2021, 35 (4): 3234- 3242.
|
9 |
ZHANG J, YU X, LI A X, et al. Weakly-supervised salient object detection via scribble annotations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 12543-12552.
URL
|
10 |
URL
|
11 |
ZHAO T, WU X Q. Image saliency detection with low-level features enhancement[C]//Proceedings of Chinese Conference on Pattern Recognition and Computer Vision. Berlin, Germany: Springer, 2018: 408-419.
URL
|
12 |
LI H Y , CHEN J , LU H C , et al. CNN for saliency detection with low-level feature integration. Neurocomputing, 2017, 226, 212- 220.
doi: 10.1016/j.neucom.2016.11.056
|
13 |
|
14 |
何亚茹, 葛洪伟. 视觉显著区域和主动轮廓结合的图像分割算法. 计算机科学与探索, 2022, 16 (5): 1155- 1168.
doi: 10.3778/j.issn.1673-9418.2011043
|
|
HE Y R , GE H W . Image segmentation algorithm combining visual salient regions and active contour. Journal of Frontiers of Computer Science and Technology, 2022, 16 (5): 1155- 1168.
doi: 10.3778/j.issn.1673-9418.2011043
|
15 |
李军侠, 王星驰, 殷梓, 等. 边缘深度挖掘的弱监督显著性目标检测. 计算机工程, 2022, 48 (3): 1- 12.
|
|
LI J X , WANG X C , YIN Z , et al. Weak supervised salience object detection in deep edge mining. Computer Engineering, 2022, 48 (3): 1- 12.
|
16 |
WANG L J, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 3796-3805.
|
17 |
LI G B , XIE Y , LIN L . Weakly supervised salient object detection using image labels. Artificial Intelligence, 2018, 32 (1): 316- 325.
|
18 |
赵世敏, 王鹏杰, 曹乾, 等. 基于图像语义的弱监督显著性物体检测. 计算机辅助设计与图形学学报, 2021, 33 (2): 270- 277.
doi: 10.3724/SP.J.1089.2021.18318
|
|
ZHAO S M , WANG P J , CAO Q , et al. Weak supervised salience object detection based on image semantics. Journal of Computer Aided Design and Graphics, 2021, 33 (2): 270- 277.
doi: 10.3724/SP.J.1089.2021.18318
|
19 |
沈启金, 龙观潮, 陈羽中. 基于图像分类的弱监督RGBD图像显著性检测方法. 小型微型计算机系统, 2022, 43 (1): 61- 68.
doi: 10.3969/j.issn.1000-1220.2022.01.011
|
|
SHEN Q J , LONG G C , CHEN Y Z . Weakly-supervised RGBD image saliency detection based on image classification. Journal of Chinese Computer Systems, 2022, 43 (1): 61- 68.
doi: 10.3969/j.issn.1000-1220.2022.01.011
|
20 |
GONTHIER N, GOUSSEEAU Y, LADJAL S, et al. Weakly super-vised object detection in artworks[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 692-709.
|
21 |
AHN J, KWAK S. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 4981-4990.
URL
|
22 |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 2921-2929.
|
23 |
ZHANG J, ZHANG T, DAF Y, et al. Deep unsupervised saliency detection: a multiple noisy labeling perspective[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 9029-9038.
URL
|
24 |
ZENG Y, ZHUGE Y Z, LU H C, et al. Multi-source weak supervision for saliency detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE Press, 2019: 6067-6076.
URL
|
25 |
SIVA P, RUSSELL C, XIANG T, et al. Looking beyond the image: unsupervised learning for object saliency and detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE Press, 2013: 3238-3245.
URL
|
26 |
PIAO Y R, WANG J, ZHANG M, et al. MFNet: multi-filter directive network for weakly supervised salient object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 4116-4125.
|
27 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 2011-2023.
URL
|
28 |
HOU Q B, CHENG M M, HU X W, et al. Deeply supervised salient object detection with short connections[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 815-828.
URL
|
29 |
YAN Q, XU L, SHI J P, et al. Hierarchical saliency detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2013: 1155-1162.
URL
|
30 |
YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2013: 3166-3173.
URL
|
31 |
LI G B, YU Y Z. Visual saliency based on multiscale deep features[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE Press, 2015: 5455-5463.
|
32 |
LI Y, HOU X D, KOCH C, et al. The secrets of salient object segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 280-287.
|
33 |
ZHANG X N, WANG T T, QI J Q, et al. Progressive attention guided recurrent network for salient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 714-722.
|
34 |
ZHANG L, DAI J, LU H C, et al. A bi-directional message passing model for salient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1741-1750.
|
35 |
LI X , YANG F , CHENG H , et al. Contour knowledge transfer for salient object detection. Berlin, Germany: Springer, 2018.
|
36 |
QIN X B, ZHANG Z C, HUANG C Y, et al. BASNet: boundary-aware salient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE Press, 2019: 7479-7489.
|
37 |
PERAZZI F, KRAHENBUHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 733-740.
|
38 |
ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 1597-1604.
|
39 |
FAN D P, GONG C, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2018: 698-704.
|
40 |
LIU J J, HOU Q B, CHENG M M, et al. A simple pooling-based design for real-time salient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE Press, 2019: 3917-3926.
|
41 |
ZHAO J X, LIU J J, FAN D P, et al. EGNet: edge guidance network for salient object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 8779-8788.
|
42 |
LIU N, HAN J W, YANG M H. PiCANet: learning pixel-wise contextual attention for saliency detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 3089-3098.
|