1 |
ZHENG C , WU W H , CHEN C , et al. Deep learning-based human pose estimation: a survey. ACM Computing Surveys, 2024, 56 (1): 1- 37.
|
2 |
冯晓月, 宋杰. 二维人体姿态估计研究进展. 计算机科学, 2020, 47 (11): 128- 136.
|
|
FENG X Y , SONG J . Advances in two-dimensional human pose estimation research. Computer Science, 2020, 47 (11): 128- 136.
|
3 |
|
4 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-08-05]. http://arxiv.org/abs/1810.04805v2.
|
5 |
|
6 |
|
7 |
|
8 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-08-05]. https://arxiv.org/abs/2010.11929.
|
9 |
XU Y F, ZHANG J, ZHANG Q M, et al. ViTPose: simple vision transformer baselines for human pose estimation[EB/OL]. [2023-08-05]. https://arxiv.org/abs/2204.12484.
|
10 |
|
11 |
|
12 |
孙琪翔, 张睿哲, 何宁, 等. 基于非局部高分辨率网络的人体姿态估计方法. 计算机工程与应用, 2022, 58 (13): 227- 234.
|
|
SUN Q X , ZHANG R Z , HE N , et al. Human pose estimation method based on non-local high-resolution networks. Computer Engineering and Applications, 2022, 58 (13): 227- 234.
|
13 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8697-8710.
|
14 |
胡挺, 祝永新, 田犁, 等. 面向移动平台的轻量级卷积神经网络架构. 计算机工程, 2019, 45 (1): 17- 22.
URL
|
|
HU T , ZHU Y X , TIAN L , et al. Lightweight convolutional neural network architecture for mobile platforms. Computer Engineering, 2019, 45 (1): 17- 22.
URL
|
15 |
高坤, 李汪根, 束阳, 等. 融入密集连接的多尺度轻量级人体姿态估计. 计算机工程与应用, 2022, 58 (24): 196- 204.
|
|
GAO K , LI W G , SHU Y , et al. Multi-scale lightweight human pose estimation with dense connections. Computer Engineering and Applications, 2022, 58 (24): 196- 204.
|
16 |
|
17 |
ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[EB/OL]. [2023-08-05]. http://arxiv.org/abs/1612.03928v3.
|
18 |
HEO B, KIM J, YUN S, et al. A comprehensive overhaul of feature distillation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 1921-1930.
|
19 |
|
20 |
|
21 |
|
22 |
LUO J H , ZHANG H , ZHOU H Y , et al. ThiNet: pruning CNN filters for a thinner net. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (10): 2525- 2538.
|
23 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-08-05]. http://arxiv.org/abs/1704.04861v1.
|
24 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6848-6856.
|
25 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 1580-1589.
|
26 |
YU C Q, XIAO B, GAO C X, et al. Lite-HRNet: a lightweight high-resolution network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 10440-10450.
|
27 |
CHENG B W, XIAO B, WANG J D, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 5385-5394.
|
28 |
GENG Z G, SUN K, XIAO B, et al. Bottom-up human pose estimation via disentangled keypoint regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 14671-14681.
|
29 |
刘圣杰, 何宁, 于海港, 等. 引入坐标注意力和自注意力的人体关键点检测研究. 计算机工程, 2022, 48 (12): 86- 94.
URL
|
|
LIU S J , HE N , YU H G , et al. Research on human key point detection with coordinated attention and self-attention. Computer Engineering, 2022, 48 (12): 86- 94.
URL
|
30 |
TSOTSOS J K . Analyzing vision at the complexity level. Behavioral and Brain Sciences, 1990, 13 (3): 423- 445.
|
31 |
TSOTSOS J K . A computational perspective on visual attention. Cambridge, USA: MIT Press, 2011.
|
32 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
33 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[EB/OL]. [2023-08-05]. https://arxiv.org/abs/1910.03151.
|
34 |
|
35 |
|
36 |
WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7794-7803.
|
37 |
|
38 |
LIU J J, HOU Q B, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 10096-10105.
|
39 |
GAO Z L, XIE J T, WANG Q L, et al. Global second-order pooling convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 3019-3028.
|
40 |
HUANG Z L, WANG X G, HUANG L C, et al. CCNet: criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 603-612.
|
41 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL]. [2023-08-05]. https://arxiv.org/abs/1802.02611.
|