1 |
张志昌, 周侗, 张瑞芳, 等. 融合双向GRU与注意力机制的医疗实体关系识别. 计算机工程, 2020, 46 (6): 296- 302.
URL
|
|
ZHANG Z C , ZHOU T , ZHANG R F , et al. Medical entity relation recognition combining bidirectional GRU and attention. Computer Engineering, 2020, 46 (6): 296- 302.
URL
|
2 |
陈梦萱, 陈艳平, 扈应, 等. 基于词义增强的生物医学命名实体识别方法. 计算机工程, 2023, 49 (10): 305- 312.
URL
|
|
CHEN M X , CHEN Y P , HU Y , et al. Biomedical named entity recognition method based on word meaning enhancement. Computer Engineering, 2023, 49 (10): 305- 312.
URL
|
3 |
|
4 |
CHRISTOPOULOU F, MIWA M, ANANIADOU S. Connecting the dots: document-level neural relation extraction with edge-oriented graphs[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP). Stroudsburg, USA: Association for Computational Linguistics, 2019: 4925-4936.
|
5 |
NAN G S, GUO Z J, SEKULIC I, et al. Reasoning with latent structure refinement for document-level relation extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 1546-1557.
|
6 |
LI B, YE W, SHENG Z H, et al. Graph enhanced dual attention network for document-level relation extraction[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: International Committee on Computational Linguistics, 2020: 1551-1560.
|
7 |
ZENG S, XU R X, CHANG B B, et al. Double graph based reasoning for document-level relation extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg, USA: Association for Computational Linguistics, 2020: 1630-1640.
|
8 |
LI J Y, XU K, LI F, et al. MRN: a locally and globally mention-based reasoning network for document-level relation extraction[C]//Proceedings of ACL-IJCNLP 2021. Stroudsburg, USA: Association for Computational Linguistics, 2021: 1359-1370.
|
9 |
HUANG L , LIN J C , LI X T , et al. EGFI: drug-drug interaction extraction and generation with fusion of enriched entity and sentence information. Briefings in Bioinformatics, 2022, 23 (1): bbab451.
doi: 10.1093/bib/bbab451
|
10 |
YE D M, LIN Y K, DU J J, et al. Coreferential reasoning learning for language representation[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg, USA: Association for Computational Linguistics, 2020: 7170-7186
|
11 |
XU B F , WANG Q , LYU Y J , et al. Entity structure within and throughout: modeling mention dependencies for document-level relation extraction. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (16): 14149- 14157.
doi: 10.1609/aaai.v35i16.17665
|
12 |
ZHOU W X , HUANG K , MA T Y , et al. Document-level relation extraction with adaptive thresholding and localized context pooling. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (16): 14612- 14620.
doi: 10.1609/aaai.v35i16.17717
|
13 |
HUANG Q Z, ZHU S Q, FENG Y S, et al. Three sentences are all you need: local path enhanced document relation extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 2: Short Papers). Stroudsburg, USA: Association for Computational Linguistics, 2021: 998-1004.
|
14 |
XU W, CHEN K H, MOU L L, et al. Document-level relation extraction with sentences importance estimation and focusing[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2022: 2920-2929.
|
15 |
|
16 |
YAO Y, YE D M, LI P, et al. DocRED: a large-scale document-level relation extraction dataset[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 764-777.
|
17 |
PENG N Y , POON H , QUIRK C , et al. Cross-sentence N-ary relation extraction with graph LSTMs. Transactions of the Association for Computational Linguistics, 2017, 5, 101- 115.
doi: 10.1162/tacl_a_00049
|
18 |
LI J , SUN Y P , JOHNSON R J , et al. BioCreative V CDR task corpus: a resource for chemical disease relation extraction. Database, 2016, 2016, baw068.
doi: 10.1093/database/baw068
|
19 |
SONG L F, ZHANG Y, WANG Z G, et al. N-ary relation extraction using graph-state LSTM[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 2226-2235.
|
20 |
ZHANG Y H, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg, USA: Association for Computational Linguistics, 2018: 2205-2215.
|
21 |
MANDYA A, BOLLEGALA D, COENEN F, et al. Combining long short term memory and convolutional neural network for cross-sentence n-ary relation extraction[EB/OL]. [2023-05-10]. https://arxiv.org/abs/1811.00845.
|
22 |
GUO Z J, ZHANG Y, LU W. Attention guided graph convolutional networks for relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 241-251.
|
23 |
DEVLIN J, CHANG M W, LEE K, et al, BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2019: 4171-4186.
|
24 |
PENG Y F, YAN S K, LU Z Y. Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets[C]//Proceedings of the 18th BioNLP Workshop and Shared Task. Stroudsburg, USA: Association for Computational Linguistics, 2019: 58-65.
|
25 |
JIANG Y , ZHOU Y , TU K W . Learning and evaluation of latent dependency forest models. Neural Computing and Applications, 2019, 31 (10): 6795- 6805.
doi: 10.1007/s00521-018-3504-3
|
26 |
ZHAO L L , XU W R , GAO S , et al. Cross-sentence N-ary relation classification using LSTMs on graph and sequence structures. Knowledge-Based Systems, 2020, 207, 106266.
doi: 10.1016/j.knosys.2020.106266
|
27 |
ZHAO D , WANG J , LIN H F , et al. Biomedical cross-sentence relation extraction via multihead attention and graph convolutional networks. Applied Soft Computing, 2021, 104, 107230.
doi: 10.1016/j.asoc.2021.107230
|
28 |
LAI P T , LU Z Y . BERT-GT: cross-sentence n-ary relation extraction with BERT and graph transformer. Bioinformatics, 2021, 36 (24): 5678- 5685.
doi: 10.1093/bioinformatics/btaa1087
|
29 |
CHEN X Y , ZHANG M , XIONG S W , et al. On the form of parsed sentences for relation extraction. Knowledge-Based Systems, 2022, 251, 109184.
doi: 10.1016/j.knosys.2022.109184
|
30 |
LI H D , YANG M , CHEN Q C , et al. Chemical-induced disease extraction via recurrent piecewise convolutional neural networks. BMC Medical Informatics and Decision Making, 2018, 18 (Suppl 2): 60.
|
31 |
VERGA P, STRUBELL E, MCCALLUM A. Simultaneously self-attending to all mentions for full-abstract biological relation extraction[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2018, 872-884.
|
32 |
BELTAGY I, LO K, COHAN A. SciBERT: a pretrained language model for scientific text[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP). Stroudsburg, USA: Association for Computational Linguistics, 2019, 3615-3620.
|
33 |
ZHANG Z Y, YU B W, SHU X B, et al. Document-level relation extraction with dual-tier heterogeneous graph[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: International Committee on Computational Linguistics, 2020: 1630-1641.
|
34 |
袁泉, 徐雲鹏, 唐成亮. 基于路径标签的文档级关系抽取方法. 计算机应用, 2023, 43 (4): 1029- 1035.
|
|
YUAN Q , XU Y P , TANG C L . Document-level relation extraction method based on path labels. Journal of Computer Applications, 2023, 43 (4): 1029- 1035.
|