1 |
WALLACE G K . The JPEG still picturecompression standard. Communications of the ACM, 1991, 34 (4): 30- 44.
doi: 10.1145/103085.103089
|
2 |
TAUBMAN D S , MARCELLIN M W , RABBANI M . JPEG2000: imagecompression fundamentals, standards and practice. Journal of Electronic Imaging, 2002, 11 (2): 286- 287.
doi: 10.1117/1.1469618
|
3 |
|
4 |
叶宗苗. 基于深度学习的端到端智能图像压缩研究[D]. 杭州: 杭州电子科技大学, 2022.
|
|
YE Z M. Research on end-to-end intelligent imagecompression based on deep learning[D]. Hangzhou: Hangzhou Dianzi University, 2022. (in Chinese)
|
5 |
LIN F Z, SUN H M, LIU J M, et al. Multistage spatial context models for learned imagecompression[C]//Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D.C., USA: IEEE Press, 2023: 1-5.
|
6 |
WANG D Z, YANG W H, HU Y Y, et al. Neural data-dependent transform for learned imagecompression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 17379-17388.
|
7 |
FU H S, LIANG F, LIN J P, et al. Learned imagecompression with Gaussian-Laplacian-logistic mixture model and concatenated residual modules[EB/OL]. [2023-10-05]. http://arxiv.org/abs/2107.06463v3.
|
8 |
CHENG Z X, SUN H M, TAKEUCHI M, et al. Learned imagecompression with discretized Gaussian mixture likelihoods and attention modules[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 7939-7948.
|
9 |
|
10 |
BALLÉ J, LAPARRA V, SIMONCELLI E P. Density modeling of images using a generalized normalization transformation[EB/OL]. [2023-10-05]. http://arxiv.org/abs/1511.06281v4.
|
11 |
MINNEN D, SINGH S. Channel-wise autoregressive entropy models for learned imagecompression[C]//Proceedings of the IEEE International Conference on Image Processing. Washington D.C., USA: IEEE Press, 2020: 3339-3343.
|
12 |
GUO Z Y , ZHANG Z Z , FENG R S , et al. Causal contextual prediction for learned imagecompression. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (4): 2329- 2341.
doi: 10.1109/TCSVT.2021.3089491
|
13 |
HE D L, YANG Z M, PENG W K, et al. ELIC: efficient learned imagecompression with unevenly grouped space-channel contextual adaptive coding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 5718-5727.
|
14 |
|
15 |
XIE Y Q, CHENG K L, CHEN Q F. Enhanced invertible encoding for learned imagecompression[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 162-170.
|
16 |
皇甫晓瑛, 钱惠敏, 黄敏. 结合注意力机制的深度神经网络综述. 计算机与现代化, 2023, (2): 40-49, 57.
|
|
HUANGFU X Y , QIAN H M , HUANG M . A review of deep neural networkscombined with attention mechanism. Computer and Modernization, 2023, (2): 40-49, 57.
|
17 |
ZHAO L J , BAI H H , WANG A H , et al. Learning a virtual codec based on deep convolutional neural network tocompress image. Journal of Visual Communication and Image Representation, 2019, 63, 102589.
doi: 10.1016/j.jvcir.2019.102589
|
18 |
|
19 |
|
20 |
ZOU R J, SONG C F, ZHANG Z X. The devil is in the details: window-based attention for imagecompression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 17492-17501.
|
21 |
QIAN Y C, LIN M, SUN X Y, et al. Entroformer: a transformer-based entropy model for learned imagecompression[EB/OL]. [2023-10-05]. http://arxiv.org/abs/2202.05492v2.
|
22 |
KIM J H, HEO B, LEE J S. Joint global and local hierarchical priors for learned imagecompression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 5992-6001.
|
23 |
|
24 |
HE D L, ZHENG Y Y, SUN B C, et al. Checkerboard context model for efficient learned imagecompression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 14771-14780.
|
25 |
|
26 |
|
27 |
|
28 |
TODERICI G, SHI W, TIMOFTE R, et al. Workshop and challenge on learned imagecompression [EB/OL]. [2023-10-05]. https://clic.compression.cc/.
|
29 |
|
30 |
CHEN F D , XU Y M , WANG L . Two-stage octave residual network for end-to-end imagecompression. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (4): 3922- 3929.
doi: 10.1609/aaai.v36i4.20308
|
31 |
|
32 |
|
33 |
LUO W J, LI Y J, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[EB/OL]. [2023-10-05]. http://arxiv.org/abs/1701.04128v2.
|
34 |
LIU J M, SUN H M, KATTO J. Learned imagecompression with mixed Transformer-CNN architectures[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 14388-14397.
|