1 |
姚颖蓓, 陆建忠, 傅业盛, 等. 华东地区电动汽车发展趋势及用电需求预测. 电力系统保护与控制, 2021, 49(4): 141- 145.
|
|
YAO T B, LU J Z, FU Y S, et al. Development trends and electricity demand forecast of electric vehicles in east China. Power System Protection and Control, 2021, 49(4): 141- 145.
|
2 |
刘坚. 电动汽车退役电池储能应用潜力及成本分析. 储能科学与技术, 2017, 6(2): 243- 249.
|
|
LIU J. Second use potential of retired EV batteries in power system and associated cost analysis. Energy Storage Science and Technology, 2017, 6(2): 243- 249.
|
3 |
刘哲. 车网互动V2G中电动汽车充放电效益优化研究[D]. 杭州: 杭州电子科技大学, 2023.
|
|
LIU Z. Study on optimization of charging and discharging benefits of electric vehicles in vehicle-network interaction V2G[D]. Hangzhou: Hangzhou Dianzi University, 2023. (in Chinese)
|
4 |
沙广林, 刘璐, 马春艳, 等. 考虑车网互动的电动汽车有序充电策略. 供用电, 2023, 40(10): 46- 54.
|
|
SHA G L, LIU L, MA C Y, et al. Orderly charging strategy for electric vehicles considering the vehicle-network interaction. Distribution & Utilization, 2023, 40(10): 46- 54.
|
5 |
刘敦楠, 王玲湘, 汪伟业, 等. 基于深度强化学习的大规模电动汽车充换电负荷优化调度. 电力系统自动化, 2022, 46(4): 36- 46.
|
|
LIU D N, WANG L X, WANG W Y, et al. Optimal scheduling of electric vehicle load for large-scale battery charging and swapping based on deep reinforcement learning. Automation of Electric Power Systems, 2022, 46(4): 36- 46.
|
6 |
刘卫亮, 闫倩文, 张启亮, 等. 基于虚拟电厂区间主从博弈的车网互动优化调度. 系统仿真学报, 2024, 36(7): 1559- 1572.
|
|
LIU W L, YAN Q W, ZHANG Q L, et al. Vehicle-to-grid interaction optimization scheduling based on virtual power plant interval master-slave game. Journal of System Simulation, 2024, 36(7): 1559- 1572.
|
7 |
PENG C, ZOU J X, LIAN L, et al. An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator's benefits. Applied Energy, 2017, 190, 591- 599.
doi: 10.1016/j.apenergy.2016.12.065
|
8 |
LI B S, WANG X, SHAHIDEHPOUR M, et al. Robust bidding strategy and profit allocation for cooperative DSR aggregators with correlated wind power generation. IEEE Transactions on Sustainable Energy, 2019, 10(4): 1904- 1915.
doi: 10.1109/TSTE.2018.2875483
|
9 |
CHEN X Y, LEUNG K C. Non-cooperative and cooperative optimization of scheduling with vehicle-to-grid regulation services. IEEE Transactions on Vehicular Technology, 2020, 69(1): 114- 130.
doi: 10.1109/TVT.2019.2952712
|
10 |
SORTOMME E, EL-SHARKAWI M A. Optimal charging strategies for unidirectional vehicle-to-grid. IEEE Transactions on Smart Grid, 2011, 2(1): 131- 138.
doi: 10.1109/TSG.2010.2090910
|
11 |
JIN C R, TANG J, GHOSH P. Optimizing electric vehicle charging with energy storage in the electricity market. IEEE Transactions on Smart Grid, 2013, 4(1): 311- 320.
doi: 10.1109/TSG.2012.2218834
|
12 |
LI B, XIE K, ZHONG W F, et al. Operation management of electric vehicle battery swapping and charging systems: a bilevel optimization approach. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 528- 540.
doi: 10.1109/TITS.2022.3211883
|
13 |
徐湘楚, 米增强, 詹泽伟, 等. 考虑多重不确定性的电动汽车聚合商参与能量-调频市场的鲁棒优化模型. 电工技术学报, 2023, 38(3): 793- 805.
|
|
XU X C, MI Z Q, ZHAN Z W, et al. A robust optimization model for electric vehicle aggregator participation in energy and frequency regulation markets considering multiple uncertainties. Transactions of China Electrotechnical Society, 2023, 38(3): 793- 805.
|
14 |
ZHANG H C, HU Z C, XU Z W, et al. Evaluation of achievable vehicle-to-grid capacity using aggregate PEV model. IEEE Transactions on Power Systems, 2017, 32(1): 784- 794.
doi: 10.1109/TPWRS.2016.2561296
|
15 |
WANG L S, KWON J, SCHULZ N, et al. Evaluation of aggregated EV flexibility with TSO-DSO coordination. IEEE Transactions on Sustainable Energy, 2022, 13(4): 2304- 2315.
doi: 10.1109/TSTE.2022.3190199
|
16 |
孙波, 李思敏, 谢敬东, 等. 基于IGDT理论的电动汽车负荷聚合商需求侧放电投标决策模型. 现代电力, 2020, 37(5): 484- 490.
|
|
SUN B, LI S M, XIE J D, et al. IGDT-based demand side discharge bidding decision strategy for electric vehicle load aggregator. Modern Electric Power, 2020, 37(5): 484- 490.
|
17 |
宋艺航, 王秀丽, 匡熠, 等. 含风电和电动汽车的VPP现货市场投标鲁棒优化模型. 电力工程技术, 2020, 39(3): 120- 127.
|
|
SONG Y H, WANG X L, KUANG Y, et al. Robust optimization model for spot market bidding of virtual power plant with wind power and electric vehicles. Electric Power Engineering Technology, 2020, 39(3): 120- 127.
|
18 |
李永刚, 孙浩潮, 周一辰, 等. 考虑新增电动汽车充放电中断风险的聚合商调频辅助服务投标策略. 电力自动化设备, 2022, 42(10): 3- 12.
|
|
LI Y G, SUN H C, ZHOU Y C, et al. Frequency regulation auxiliary service bidding strategy for aggregators considering charging and discharging interruption risk of newly added electric vehicles. Electric Power Automation Equipment, 2022, 42(10): 3- 12.
|
19 |
ZHAO L, ZHANG W, HAO H, et al. A geometric approach to aggregate flexibility modeling of thermostatically controlled loads. IEEE Transactions on Power Systems, 2017, 32(6): 4721- 4731.
doi: 10.1109/TPWRS.2017.2674699
|
20 |
CHEN X, DALL'ANESE E, ZHAO C H, et al. Aggregate power flexibility in unbalanced distribution systems. IEEE Transactions on Smart Grid, 2020, 11(1): 258- 269.
doi: 10.1109/TSG.2019.2920991
|
21 |
WU H Y, SHAHIDEHPOUR M, ALABDULWAHAB A, et al. A game theoretic approach to risk-based optimal bidding strategies for electric vehicle aggregators in electricity markets with variable wind energy resources[C]//Proceedings of IEEE Power and Energy Society General Meeting. Washington D. C., USA: IEEE Press, 2016: 374-385.
|
22 |
RIVERA J, GOEBEL C, JACOBSEN H A. Distributed convex optimization for electric vehicle aggregators. IEEE Transactions on Smart Grid, 2017, 8(4): 1852- 1863.
doi: 10.1109/TSG.2015.2509030
|
23 |
TAN X Q, QU G N, SUN B, et al. Optimal scheduling of battery charging station serving electric vehicles based on battery swapping. IEEE Transactions on Smart Grid, 2019, 10(2): 1372- 1384.
doi: 10.1109/TSG.2017.2764484
|
24 |
ZHENG J H, WANG X Y, MEN K, et al. Aggregation model-based optimization for electric vehicle charging strategy. IEEE Transactions on Smart Grid, 2013, 4(2): 1058- 1066.
doi: 10.1109/TSG.2013.2242207
|
25 |
KANG Q, WANG J B, ZHOU M C, et al. Centralized charging strategy and scheduling algorithm for electric vehicles under a battery swapping scenario. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(3): 659- 669.
doi: 10.1109/TITS.2015.2487323
|
26 |
HABIBIFAR R, ARIS LEKVAN A, EHSAN M. A risk-constrained decision support tool for EV aggregators participating in energy and frequency regulation markets. Electric Power Systems Research, 2020, 185, 106367.
doi: 10.1016/j.epsr.2020.106367
|
27 |
LI H P, WAN Z Q, HE H B. Constrained EV charging scheduling based on safe deep reinforcement learning. IEEE Transactions on Smart Grid, 2020, 11(3): 2427- 2439.
doi: 10.1109/TSG.2019.2955437
|
28 |
YU P P, ZHANG H C, SONG Y H. District cooling system control for providing regulation services based on safe reinforcement learning with barrier functions. Applied Energy, 2023, 347, 121396.
doi: 10.1016/j.apenergy.2023.121396
|
29 |
MA R, YI Z H, XIANG Y M, et al. A blockchain-enabled demand management and control framework driven by deep reinforcement learning. IEEE Transactions on Industrial Electronics, 2023, 70(1): 430- 440.
doi: 10.1109/TIE.2022.3146631
|
30 |
LI H P, HE H B. Learning to operate distribution networks with safe deep reinforcement learning. IEEE Transactions on Smart Grid, 2022, 13(3): 1860- 1872.
doi: 10.1109/TSG.2022.3142961
|
31 |
张文昕, 栗然, 臧向迪, 等. 基于强化学习的电动汽车换电站实时调度策略优化. 电力自动化设备, 2022, 42(10): 134- 141.
|
|
ZHANG W X, LI R, ZANG X D, et al. Real-time scheduling strategy optimization for electric vehicle battery swapping station based on reinforcement learning. Electric Power Automation Equipment, 2022, 42(10): 134- 141.
|