1 |
LIN Z H, WANG H, MAO J S, et al. Feature-aware diversified re-ranking with disentangled representations for relevant recommendation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 3327-3335.
|
2 |
COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2016: 191-198.
|
3 |
CAI Q P, LIU S C, WANG X L, et al. Reinforcing user retention in a billion scale short video recommender system[C]//Proceedings of ACM Web Conference. New York, USA: ACM Press, 2023: 368-379.
|
4 |
ZHOU G R, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction. Artificial Intelligence, 2019, 33(1): 5941- 5948.
|
5 |
ZHOU G R, ZHU X Q, SONG C R, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 1059-1068.
|
6 |
汤佳欣, 陈阳, 周孟莹, 等. 深度学习方法在兴趣点推荐中的应用研究综述. 计算机工程, 2022, 48(1): 12-23, 42.
URL
|
|
TANG J X, CHEN Y, ZHOU M Y, et al. A survey of studies on deep learning applications in POI recommendation. Computer Engineering, 2022, 48(1): 12-23, 42.
URL
|
7 |
CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York, USA: ACM Press, 2016: 7-10.
|
8 |
HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. [2023-08-20]. http://arxvi.org/abs/1511.06939.
|
9 |
|
10 |
CHEN Q, PEI C, LÜ S, et al. End-to-end user behavior retrieval in click-through rateprediction model[EB/OL]. [2023-08-20]. http://arxvi.org/abs/2108.04468.
|
11 |
钟川, 陈军. 基于精确欧氏局部敏感哈希的改进协同过滤推荐算法. 计算机工程, 2017, 43(2): 74- 78.
URL
|
|
ZHONG C, CHEN J. Improved collaborative filtering recommendation algorithm based on exact Euclidean locality sensitive Hashing. Computer Engineering, 2017, 43(2): 74- 78.
URL
|
12 |
陈碧毅, 黄玲, 王昌栋, 等. 融合显式反馈与隐式反馈的协同过滤推荐算法. 软件学报, 2020, 31(3): 794- 805.
|
|
CHEN B Y, HUANG L, WANG C D, et al. Explicit and implicit feedback based collaborative filtering algorithm. Journal of Software, 2020, 31(3): 794- 805.
|
13 |
王东, 陈志, 岳文静, 等. 基于显式与隐式反馈信息的概率矩阵分解推荐. 计算机应用, 2015, 35(9): 2574-2578, 2601.
|
|
WANG D, CHEN Z, YUE W J, et al. Probabilistic matrix factorization recommendation with explicit and implicit feedback. Journal of Computer Applications, 2015, 35(9): 2574-2578, 2601.
|
14 |
LIU N N, XIANG E W, ZHAO M, et al. Unifying explicit and implicit feedback for collaborative filtering[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2010: 1445-1448.
|
15 |
XIE R B, LING C, WANG Y L, et al. Deep feedback network for recommendation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2020: 2519-2525.
|
16 |
WU C H, WU F Z, QI T, et al. FeedRec: news feed recommendation with various user feedbacks[C]//Proceedings of ACM Web Conference. New York, USA: ACM Press, 2022: 2088-2097.
|
17 |
邢玉莹, 夏鸿斌, 王涵. 缺失数据建模的改进型ALS在线推荐算法. 计算机工程, 2018, 44(8): 212-217, 223.
URL
|
|
XING Y Y, XIA H B, WANG H. Improved ALS online recommendation algorithm with missing data modeling. Computer Engineering, 2018, 44(8): 212-217, 223.
URL
|
18 |
|
19 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of NIPS'17. Cambridge, USA: MIT Press, 2017: 30-38.
|
20 |
PI Q, ZHOU G, ZHANG Y, et al. Search-based user interest modeling with lifelong sequenti-al behavior data for click-through rate prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 2685-2692.
|
21 |
GU Y L, DING Z Y, WANG S Q, et al. Deep multifaceted transformers for multi-objective ranking in large-scale E-commerce recommender systems[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 2493-2500.
|
22 |
ZHAO Z, HONG L C, WEI L, et al. Recommending what video to watch next: a multitask ranking system[C]//Proceedings of the 13th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2019: 43-51.
|
23 |
XIA L H, XU Y, HUANG C, et al. Graph meta network for multi-behavior recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 757-766.
|
24 |
SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 1441-1450.
|
25 |
XIE X, SUN F, LIU Z Y, et al. Contrastive learning for sequential recommendation[C]//Proceedings of the 38th IEEE International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2022: 1259-1273.
|
26 |
QIU R H, HUANG Z, YIN H Z, et al. Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 813-823.
|
27 |
高萍, 杨宇晓. 基于三层加权分数阶傅里叶变换的安全通信系统. 电讯技术, 2022, 62(11): 1622- 1628.
|
|
GAO P, YANG Y X. A safe communication system based on three-layer weighted fractional Fourier transform. Telecommunication Engineering, 2022, 62(11): 1622- 1628.
|
28 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
29 |
GUO H F, TANG R M, YE Y M, et al. DeepFM: a factorization-machine based neural network for CTR prediction[EB/OL]. [2023-08-20]. http://arxvi.org/abs/1703.04247.
|
30 |
WANG R X, SHIVANNA R, CHENG D, et al. DCN V2: improved deep & cross network and practical lessons for web-scale learning to rank systems[C]//Proceedings of Web Conference. New York, USA: ACM Press, 2021: 1785-797.
|
31 |
SONG W, SHI C, XIAO Z, et al. Autoint: automatic feature interaction learning via self-at-tentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 1161-1170.
|
32 |
HUANG T W, ZHANG Z Q, ZHANG J L. FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2019: 169-177.
|
33 |
BIAN Z, ZHOU S J, FU H, et al. Denoising user-aware memory network for recommendation[C]//Proceedings of the 15th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2021: 400-410.
|