[1] BAIK C, JAGADISH H V, LI Y Y. Bridging the semantic gap with SQL query logs in natural language interfaces to databases[C]// Proceedings of the IEEE 35th International Conference on Data Engineering. Washington D. C., USA:IEEE Press, 2019:374-385. [2] ZHONG V, XIONG C M, SOCHER R. Seq2SQL:generating structured queries from natural language using reinforcement learning[EB/OL].[2023-11-01] . https://arxiv.org/abs/1709.00103v7. [3] HE P C, MAO Y, CHAKRABARTI K, et al. X-SQL:reinforce schema representation with context[EB/OL].[2023-11-01] . https://arxiv.org/abs/1908.08113v1. [4] ZHANG X Y, YIN F J, MA G J, et al. M-SQL:multi-task representation learning for single-table Text2SQL generation[J]. IEEE Access, 2020, 8:43156-43167. [5] 吕剑清,王先兵,陈刚,等.面向工业生产的中文Text-to-SQL模型[J].计算机应用, 2022, 42(10):2996-3002. LV J Q, WANG X B, CHEN G, et al. Chinese Text-to-SQL model for industrial production[J]. Journal of Computer Applications, 2022, 42(10):2996-3002.(in Chinese) [6] 何佳壕,刘喜平,舒晴,等.带复杂计算的金融领域自然语言查询的SQL生成[J].浙江大学学报(工学版), 2023, 57(2):277-286. HE J H, LIU X P, SHU Q, et al. SQL generation from natural language queries with complex calculations on financial data[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(2):277-286.(in Chinese) [7] YU T, ZHANG R, YANG K, et al. Spider:a large-scale human-labeled dataset for complex and cross-domain semantic parsing and Text-to-SQL task[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2018:3911-3921. [8] MIN Q K, SHI Y F, ZHANG Y. A pilot study for Chinese SQL semantic parsing[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA:ACL, 2019:3652-3658. [9] RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21(1):5485-5551. [10] LI J Y, HUI B Y, CHENG R, et al. Graphix-T5:mixing pre-trained transformers with graph-aware layers for Text-to-SQL parsing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(11):13076-13084. [11] LI H Y, ZHANG J, LI C P, et al. RESDSQL:decoupling schema linking and skeleton parsing for Text-to-SQL[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(11):13067-13075. [12] BOGIN B, GARDNER M, BERANT J. Representing schema structure with graph neural networks for Text-to-SQL parsing[EB/OL].[2023-11-01] . https://arxiv.org/abs/1905.06241v1. [13] WANG B L, SHIN R, LIU X D, et al. RAT-SQL:relation-aware schema encoding and linking for Text-to-SQL parsers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:ACL, 2020:1-10. [14] CHEN Z, CHEN L, ZHAO Y B, et al. ShadowGNN:graph projection neural network for Text-to-SQL parser[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, USA:ACL, 2021:5567-5577. [15] CAI R C, YUAN J J, XU B Y, et al. SADGA:structure-aware dual graph aggregation network for Text-to-SQL[J]. Advances in Neural Information Processing Systems, 2021, 34:7664-7676. [16] GAN Y J, CHEN X Y, PURVER M. Exploring underexplored limitations of cross-domain Text-to-SQL generalization[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:ACL, 2021:8926-8931. [17] GAN Y J, CHEN X Y, HUANG Q P, et al. Towards robustness of Text-to-SQL models against synonym substitution[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA:ACL, 2021:2505-2515. [18] GUO J Q, ZHAN Z C, GAO Y, et al. Towards complex Text-to-SQL in cross-domain database with intermediate representation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:ACL, 2019:4524-4535. [19] 曹合心,赵亮,李雪峰.图神经网络在Text-to-SQL解析中的技术研究[J].计算机科学, 2022, 49(4):110-115. CAO H X, ZHAO L, LI X F. Technical research of graph neural network for Text-to-SQL parsing[J]. Computer Science, 2022, 49(4):110-115.(in Chinese) [20] WANG B L, SHIN R, LIU X D, et al. RAT-SQL:relation-aware schema encoding and linking for Text-to-SQL parsers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:ACL, 2020:7567-7578. [21] HUI B Y, GENG R Y, WANG L H, et al. S2SQL:injecting syntax to question-schema interaction graph encoder for Text-to-SQL parsers[M]//DHABI A, EMIRATES U A. Findings of the Association for Computational Linguistics:ACL 2022. Stroudsburg, USA:ACL, 2022:1254-1262. [22] CAO R S, CHEN L, CHEN Z, et al. LGESQL:line graph enhanced Text-to-SQL model with mixed local and non-local relations[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA:ACL, 2021:2541-2555. [23] XIANG Y Z, ZHANG Q W, ZHANG X, et al. G3R:a graph-guided generate-and-rerank framework for complex and cross-domain Text-to-SQL generation[C]//Proceedings of Annual Conference of the Association for Computational Linguistics. Stroudsburg, USA:ACL, 2023:338-352. [24] SCHOLAK T, SCHUCHER N, BAHDANAU D. PICARD:parsing incrementally for constrained auto-regressive decoding from language models[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2021:9895-9901. [25] XIE T B, WU C H, SHI P, et al. UnifiedSKG:unifying and multi-tasking structured knowledge grounding with text-to-text language models[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2022:602-631. [26] QI J X, TANG J Y, HE Z W, et al. RASAT:integrating relational structures into pretrained Seq2Seq model for Text-to-SQL[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2022:3215-3229. [27] RAI D, WANG B L, ZHOU Y L, et al. Improving generalization in language model-based Text-to-SQL semantic parsing:two simple semantic boundary-based techniques[EB/OL].[2023-11-01] . https://arxiv.org/abs/2305.17378v1. [28] PENNINGTON J, SOCHER R, MANNING C. Glove:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2014:1532-1543. [29] CLARK K, LUONG M T, LE Q V, et al. ELECTRA:pre-training text encoders as discriminators rather than generators[EB/OL].[2023-11-01] . https://arxiv.org/abs/2003.10555v1. [30] JO J, BAEK J, LEE S, et al. Edge representation learning with hypergraphs[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2024:7534-7546. [31] VELI AČG KOVI AĆG P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].[2023-11-01] . https://arxiv.org/abs/1710.10903. [32] WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2020:3229-3238. [33] LIN X V, SOCHER R, XIONG C M. Bridging textual and tabular data for cross-domain Text-to-SQL semantic parsing[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2020:4870-4888. [34] QIN B W, WANG L H, HUI B Y, et al. SUN:exploring intrinsic uncertainties in Text-to-SQL parsers[C]//Proceedings of the 29th International Conference on Computational Linguistics. Gyeongju, Republic of Korea:International Committee on Computational Linguistics, 2022:298-5308. [35] WANG L H, QIN B W, HUI B Y, et al. Proton:probing schema linking information from pre-trained language models for Text-to-SQL parsing[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2022:1889-1898. |