[1] PÉREZ-GUERRERO C, CIPRIÁN-SÁNCHEZ J F, PALACIOS A, et al. Computer vision-based characterization of large-scale jet flames using a synthetic infrared image generation approach[J]. Engineering Applications of Artificial Intelligence, 2024, 127:107275. [2] EYIOKUR F I, KANTARCI A, ERAKıN M E, et al. A survey on computer vision based human analysis in the COVID-19 era[J]. Image and Vision Computing, 2023, 130:104610. [3] KHURANA D, KOLI A, KHATTER K, et al. Natural language processing:state of the art, current trends and challenges[J]. Multimedia Tools and Applications, 2023, 82(3):3713-3744. [4] LIAO J W, ESKIMEZ S, LU L Y, et al. Improving readability for automatic speech recognition transcription[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2023, 22(5):1-23. [5] LIU F Y, BUGLIARELLO E, PONTI E M, et al. Visually grounded reasoning across languages and cultures[EB/OL].[2024-01-09] . https://arxiv.org/abs/2109.13238v2. [6] 王军,冯孙铖,程勇.深度学习的轻量化神经网络结构研究综述[J].计算机工程, 2021, 47(8):1-13. WANG J, FENG S C, CHENG Y. Survey of research on lightweight neural network structures for deep learning[J]. Computer Engineering, 2021, 47(8):1-13.(in Chinese) [7] OGBOGU C O, ARKA A I, PFROMM L, et al. Accelerating graph neural network training on ReRAM-based PIM architectures via graph and model pruning[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(8):2703-2716. [8] STEWART J, MICHIELI U, OZAY M. Data-free model pruning at initialization via expanders[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA:IEEE Press, 2023:4518-4523. [9] 郭奕裕,周箩鱼.安全帽佩戴检测网络模型的轻量化设计[J].计算机工程, 2023, 49(4):312-320. GUO Y Y, ZHOU L Y. Lightweight design of safety helmet wearing detection network model[J]. Computer Engineering, 2023, 49(4):312-320.(in Chinese) [10] GOU J P, XIONG X S, YU B S, et al. Multi-target knowledge distillation via student self-reflection[J]. International Journal of Computer Vision, 2023, 131(7):1857-1874. [11] 曹坪,杨怀志,薄一军,等.面向低质量裂缝图像的多知识蒸馏分类[J].计算机工程, 2023, 49(7):204-213. CAO P, YANG H Z, BO Y J, et al. Low-quality crack image classification with multi-knowledge distillation[J]. Computer Engineering, 2023, 49(7):204-213.(in Chinese) [12] ZOU H, ZHANG C, LASAULCE S, et al. Goal-oriented quantization:analysis, design, and application to resource allocation[J]. IEEE Journal on Selected Areas in Communications, 2022, 41(1):42-54. [13] XU N J, CHEN X H, CAO Y L, et al. Hybrid post-training quantization for super-resolution neural network compression[J]. IEEE Signal Processing Letters, 2023, 30:379-383. [14] 巩杰,赵烁,何虎,等.基于FPGA的量化CNN加速系统设计[J].计算机工程, 2022, 48(3):170-174, 196. GONG J, ZHAO S, HE H, et al. Design of quantized CNN acceleration system based on FPGA[J]. Computer Engineering, 2022, 48(3):170-174, 196.(in Chinese) [15] CHEN T Q, MOREAU T, JIANG Z H, et al. TVM[C]//Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation. New York, USA:ACM Press, 2018:579-594. [16] LI M Z, LIU Y, LIU X Y, et al. The deep learning compiler:a comprehensive survey[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(3):708-727. [17] ZHANG H, XING M, WU Y, et al. Compiler technologies in deep learning co-design:a survey[EB/OL].[2024-01-09] . https://spj.science.org/doi/10.34133/icomputing.0040. [18] ROESCH J, LYUBOMIRSKY S, WEBER L, et al. Relay:a new IR for machine learning frameworks[C]//Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. New York, USA:ACM Press, 2018:58-68. [19] JAIN A, BHATTACHARYA S, MASUDA M, et al. Efficient execution of quantized deep learning models:a compiler approach[EB/OL].(2020-06-18)[2024-01-09] . https://doi.org/10.48550/arXiv.2006.10226. [20] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA:IEEE Press, 2016:770-778. [22] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA:IEEE Press, 2016:2818-2826. [23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2024-01-09] . https://doi.org/10.48550/arXiv.1409.1556. [24] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA:IEEE Press, 2018:4510-4520. [25] CHEN T, LI M, LI Y, et al. MXNet:a flexible and efficient machine learning library for heterogeneous distributed systems[EB/OL].(2015-12-03)[2024-01-09] . https://doi.org/10.48550/arXiv.1512.01274. |