[1] VELI AČG KOVI AĆG P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C]//Proceedings of International Conference on Learning Representations. New Orleans, USA:[s. n.], 2019:1-10. [2] YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]//Proceedings of the Web Conference. New York, USA:ACM Press, 2021:413-424. [3] WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2021:726-735. [4] HASSANI K, KHASAHMADI A H. Contrastive multi-view representation learning on graphs[C]//Proceedings of International Conference on Machine Learning.[S. l.]:PMLR, 2020:4116-4126. [5] 李盼,解庆,李琳,等.知识增强的图神经网络序列推荐模型[J].计算机工程, 2023, 49(2):70-80. LI P, XIE Q, LI L, et al. Knowledge-enhanced graph neural network model for sequential recommendation[J]. Computer Engineering, 2023, 49(2):70-80.(in Chinese) [6] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2019:165-174. [7] HE X N, DENG K, WANG X, et al. LightGCN[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2020:639-648. [8] CHEN L, WU L, HONG R C, et al. Revisiting graph based collaborative filtering:a linear residual graph convolutional network approach[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1):27-34. [9] XIA L H, HUANG C, ZHANG C X. Self-supervised hypergraph transformer for recommender systems[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2022:1-10. [10] ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2022:1358-1368. [11] ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2022:1358-1368. [12] YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2022:1434-1443. [13] CUI Q, WEI T, ZHANG Y F, et al. HeroGRAPH:a heterogeneous graph framework for multi-target cross-domain recommendation[EB/OL].[2023-10-11] . https://www.semanticscholar.org/paper/HeroGRAPH% 3A-A-Heterogeneous-Graph-Framework-for-Cui-Wei/8dd295ad03ee 1cef2c8b3ad71d24c08019d8029f. [14] CHEN F W, PAN S R, JIANG J, et al. DAGCN:dual attention graph convolutional networks[EB/OL].[2023-10-11] . https://arxiv.org/abs/1904.02278. [15] CHAI H H, WEI X M, MA H X, et al. Knowledge-enhanced graph transformer network for multi-behavior and item-knowledge session-based recommendation[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC). Prague, Czech Republic:IEEE Press, 2022:3421-3426. [16] XIAO F T, LI L, XU W N, et al. DMBGN:deep multi-behavior graph networks for voucher redemption rate prediction[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2021:3786-3794. [17] WEI Y W, WANG X, NIE L Q, et al. Graph-refined convolutional network for multimedia recommendation with implicit feedback[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA:ACM Press, 2020:3541-3549. [18] WANG Q F, WEI Y W, YIN J H, et al. DualGNN:dual graph neural network for multimedia recommendation[J]. IEEE Transactions on Multimedia, 2023, 25:1074-1084. [19] OPOLKA F L, SOLOMON A, CANGEA C, et al. Spatio-temporal deep graph infomax[EB/OL].[2023-10-11] . https://arxiv.org/abs/1904.06316v1. [20] ZHU Y Q, XU Y C, YU F, et al. Deep graph contrastive representation learning[EB/OL].[2023-10-11] . https://arxiv.org/abs/2006.04131v1. [21] ZHU Y Q, XU Y C, YU F, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of the Web Conference. New York, USA:ACM Press, 2021:2069-2080. [22] PARK H, LEE S, KIM S, et al. Metropolis-Hastings data augmentation for graph neural networks[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2021:19010-19020. [23] WANG Y W, CAI Y J, LIANG Y X, et al. Adaptive data augmentation on temporal graphs[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2021:1440-1452. [24] YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2020:5812-5823. [25] LIN Z H, TIAN C X, HOU Y P, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference. New York, USA:ACM Press, 2022:2320-2329. [26] YU J, YIN H, XIA X, et al. Are graph augmentations necessary?Simple graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2022:1294-1303. [27] XUAN H R, LIU Y, LI B H, et al. Knowledge enhancement for contrastive multi-behavior recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York, USA:ACM Press, 2023:195-203. [28] YIN Y H, WANG Q Z, HUANG S Y, et al. AutoGCL:automated graph contrastive learning via learnable view generators[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(8):8892-8900. [29] JANG E, GU S, POOLE B. Categorical reparameterization with Gumbel-Softmax[EB/OL].[2023-10-11] . https://arxiv.org/abs/1611.01144. [30] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, USA:AUAI Press, 2009:452-461. [31] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York, USA:ACM Press, 2017:173-182. [32] WEI T X, FENG F L, CHEN J W, et al. Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2021:1791-1800. |