[1] CHEN H G, HE X H, QING L B, et al. Real-world single image super-resolution:a brief review[J]. Information Fusion, 2022, 79:124-145. [2] 丁子轩,俞雷,张娟,等.基于深度残差自适应注意力网络的图像超分辨率重建[J].计算机工程, 2023, 49(5):231-238. DING Z X, YU L, ZHANG J, et al. Image super-resolution reconstruction based on depth residual adaptive attention network[J]. Computer Engineering, 2023, 49(5):231-238.(in Chinese) [3] JEEVAN P, SRINIDHI A, PRATHIBA P, et al. WaveMixSR:resource-efficient neural network for image super-resolution[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D.C.,USA:IEEE Press,2024:5884-5892. [4] 王晔,孙志宽,李征.基于生成对抗网络与噪声分布的图像超分辨率重建方法[J].四川大学学报(自然科学版), 2023, 60(3):45-54. WANG Y, SUN Z K, LI Z. An image super-resolution reconstruction method based on generative adversarial network and noise distribution[J]. Journal of Sichuan University (Natural Science Edition), 2023, 60(3):45-54.(in Chinese) [5] DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[EB/OL].[2024-03-05] . https://link.springer.com/chapter/10.1007/978-3-319-10593-2_13. [6] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2016:1646-1654. [7] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C.,USA:IEEE Press,2017:136-144. [8] 柳聪,屈丹,司念文,等.基于深度可分离卷积的轻量级图像超分辨率重建[J].计算机工程, 2022, 48(6):228-234. LIU C, QU D, SI N W, et al. Lightweight image super-resolution reconstruction based on depthwise separable convolution[J]. Computer Engineering, 2022, 48(6):228-234.(in Chinese) [9] AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[EB/OL].[2024-03-05] . https://arxiv.org/abs/1803.08664. [10] HUI Z, WANG X M, GAO X B. Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018:723-731. [11] HUI Z, GAO X B, YANG Y C, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York,USA:ACM Press,2019:2024-2032. [12] LI W, ZHOU K, QI L, et al. LAPAR:linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond[EB/OL].[2024-03-05] . https://arxiv.org/abs/2105.10422. [13] WANG L, DONG X, WANG Y, et al. Exploring sparsity in image super-resolution for efficient inference[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2021:4917-4926. [14] GAO Q Q, ZHAO Y, LI G, et al. Image super-resolution using knowledge distillation[EB/OL].[2024-03-05] . https://link.springer.com/chapter/10.1007/978-3-030-20890-5_34. [15] ZHANG X M, LI T R, ZHAO X L. Boosting single image super-resolution via partial channel shifting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2023:13223-13232. [16] DING X H, GUO Y C, DING G G, et al. ACNet:strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2019:1911-1920. [17] KONG F Y, LI M X, LIU S W, et al. Residual local feature network for efficient super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C.,USA:IEEE Press,2022:766-776. [18] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution:dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C.,USA:IEEE Press,2017:126-135. [19] KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL].[2024-03-05] . https://arxiv.org/abs/1412.6980. [20] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[EB/OL].[2024-03-05] . http://eprints.imtlucca.it/2412/1/Bevilacqua_2012.pdf. [21] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[EB/OL].[2024-03-05] . https://link.springer.com/chapter/10.1007/978-3-642-27413-8_47. [22] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2001:416-423. [23] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2015:5197-5206. [24] MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using Manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76(20):21811-21838. [25] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018:586-595. [26] LIU J, TANG J, WU G S. Residual feature distillation network for lightweight image super-resolution[EB/OL].[2024-03-05] . https://arxiv.org/abs/2009.11551. [27] DU Z C, LIU D, LIU J, et al. Fast and memory-efficient network towards efficient image super-resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C.,USA:IEEE Press,2022:853-862. [28] ZHANG X D, ZENG H, GUO S, et al. Efficient long-range attention network for image super-resolution[EB/OL].[2024-03-05] . https://arxiv.org/abs/2203.06697. [29] LI X, DONG J X, TANG J H, et al. DLGSANet:lightweight dynamic local and global self-attention network for image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2023:12792-12801. |