作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (5): 257-265. doi: 10.19678/j.issn.1000-3428.0069822

• 图形图像处理 • 上一篇    下一篇

基于自注意力特征蒸馏的轻量级图像超分辨率重建

赵瑶谦1, 滕奇志1, 何小海1, 税爱2, 陈洪刚1   

  1. 1. 四川大学电子信息学院, 四川 成都 610065;
    2. 四川德爱鑫玛机器有限公司, 四川 遂宁 629200
  • 收稿日期:2024-05-07 修回日期:2024-07-25 出版日期:2025-05-15 发布日期:2024-10-15
  • 通讯作者: 陈洪刚,E-mail:honggang_chen@scu.edu.cn E-mail:honggang_chen@scu.edu.cn
  • 基金资助:
    国家自然科学基金(62001316);四川省科技计划(2024YFHZ0212);四川大学遂宁市校市战略合作“揭榜挂帅”科技项目(2022CDSN-15)。

Lightweight Image Super-Resolution Reconstruction Based on Self-Attention Feature Distillation

ZHAO Yaoqian1, TENG Qizhi1, HE Xiaohai1, SHUI Ai2, CHEN Honggang1   

  1. 1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, Sichuan, China;
    2. D. I. Sinma (Sichuan) Machinery Co., Ltd., Suining 629200, Sichuan, China
  • Received:2024-05-07 Revised:2024-07-25 Online:2025-05-15 Published:2024-10-15

摘要: 单幅图像超分辨率(SISR)旨在从给定的低分辨率(LR)图像中重建出高分辨率(HR)图像。近年来,基于深度学习的SISR算法取得了出色的重建效果,引起了广泛关注。然而,大多数基于深度学习的SISR算法存在复杂度高、参数量大等问题,影响实际应用。为了克服以上问题,提出一种基于自注意力特征蒸馏的模块,在降低模型复杂度的同时充分提取图像深层特征,实现轻量化的超分辨率重建。该模块包含2个技术创新:一是在全局注意力的计算中提出基于非对称卷积的前馈网络,利用非对称卷积优越的非线性特征提取能力压缩输入通道,节省计算开销;二是在空间注意力模块中引入部分通道位移操作,在不增加计算量的同时,通过位移部分通道达到提高特征多样性的目的。在6个常用公开数据集上的超分辨率实验结果表明,相比于CARN、SMSR、DLGSANet等具有代表性的轻量级SISR算法,所提算法在峰值信噪比(PSNR)、结构相似度(SSIM)、LPIPS评价指标上取得了更好的表现,同时重建结果的主观视觉效果更优,更好地平衡了模型复杂度与重建性能。

关键词: 图像超分辨率, 特征蒸馏, 深度学习, 非对称卷积, 自注意力

Abstract: Single Image Super-Resolution (SISR) reconstructs High-Resolution (HR) images from Low-Resolution (LR) images. In recent years, deep learning-based SISR methods have achieved outstanding reconstruction results, attracting widespread attention. However, most models suffer from high complexity and large parameter size, which affects their practical application. To overcome these issues, this study proposes a module based on self-attention feature distillation, which reduces complexity while fully extracting deep image features, achieving lightweight super-resolution reconstruction. The proposed module has two technical features. First, a feedback network based on asymmetric convolution is proposed for computing global attention, utilizing the superior nonlinear feature extraction capability of asymmetric convolution to compress input channels and reduce computational costs. Second, a partial channel shifting operation is introduced in the spatial attention module to increase feature diversity by shifting partial channels without increasing the computational complexity. In experiments on six commonly used public datasets, the proposed method outperforms representative lightweight SISR methods such as CARN, SMSR, and DLGSANet in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS). In addition, the subjective visual quality of the reconstruction results produced by the proposed method is superior. Overall, the proposed method achieves a better balance between model complexity and reconstruction performance.

Key words: image super-resolution, feature distillation, deep learning, asymmetric convolution, self-attention

中图分类号: