1 |
MAO Y Y , YOU C S , ZHANG J , et al. A survey on mobile edge computing: the communication perspective. IEEE Communications Surveys & Tutorials, 2017, 19 (4): 2322- 2358.
URL
|
2 |
ZHAO B W , LIU X M , CHEN W N , et al. CrowdFL: privacy-preserving mobile crowdsensing system via federated learning. IEEE Transactions on Mobile Computing, 2023, 22 (8): 4607- 4619.
doi: 10.1109/TMC.2022.3157603
|
3 |
YANG Q , LIU Y , CHEN T J , et al. Federated machine learning. ACM Transactions on Intelligent Systems and Technology, 2019, 10 (2): 1- 19.
doi: 10.1145/3298981
|
4 |
KAIROUZ P , MCMAHAN H B , AVENT B , et al. Advances and open problems in federated learning. Foundations and Trends© in Machine Learning, 2021, 14 (1-2): 1- 210.
URL
|
5 |
YU S, CUI L. Poisoning attacks and counterattacks in federated learning[M]//Digital Privacy and Security. Singapore: Springer Nature Singapore, 2022: 37-54.
|
6 |
MOTHUKURI V , PARIZI R M , POURIYEH S , et al. A survey on security and privacy of federated learning. Future Generation Computer Systems, 2021, 115, 619- 640.
doi: 10.1016/j.future.2020.10.007
|
7 |
LYU L , YU H , MA X J , et al. Privacy and robustness in federated learning: attacks and defenses. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35 (7): 8726- 8746.
URL
|
8 |
SHOKRI R, STRONATI M, SONG C Z, et al. Membership inference attacks against machine learning models[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP). Washington D. C., USA: IEEE Press, 2017: 3-18. 10.1109/SP.2017.41
|
9 |
SUN Y C , CHEN Y L , WU P , et al. DRL: dynamic rebalance learning for adversarial robustness of UAV with long-tailed distribution. Computer Communications, 2023, 205, 14- 23.
doi: 10.1016/j.comcom.2023.04.002
|
10 |
HUANG Y , CHEN Y L , WANG X W , et al. Promoting adversarial transfer ability via dual-sampling variance aggregation and feature heterogeneity attacks. Electronics, 2023, 12 (3): 767.
doi: 10.3390/electronics12030767
|
11 |
MAHAWAGA ARACHCHIGE P C , BERTOK P , KHALIL I , et al. Local differential privacy for deep learning. IEEE Internet of Things Journal, 2020, 7 (7): 5827- 5842.
doi: 10.1109/JIOT.2019.2952146
|
12 |
CORMODE G, JHA S, KULKARNI T, et al. Privacy at scale: local differential privacy in practice[C]//Proceedings of the 2018 International Conference on Management of Data. New York, USA: ACM Press, 2018: 1655-1658. 10.1145/3183713.3197390
|
13 |
|
14 |
FANG M H, CAO X Y, JIA J Y, et al. Local model poisoning attacks to byzantine-robust federated learning[C]//Proceedings of the 29th USENIX Conference on Security Symposium. New York, USA: ACM Press, 2020: 1623-1640.
|
15 |
ZHANG Z X, CAO X Y, JIA J Y, et al. FLDetector: defending federated learning against model poisoning attacks via detecting malicious clients[EB/OL]. [2023-10-25]: https://arxiv.org/abs/2207.09209v4.
|
16 |
|
17 |
BERNAU D, ROBL J, GRASSAL P W, et al. Comparing local and central differential privacy using membership inference attacks[C]//Proceedings of IFIP Annual Conference on Data and Applications Security and Privacy. Berlin, Germany: Springer, 2021: 22-42. 10.1007/978-3-030-81242-3_2
|
18 |
KHALIQ A A , ANJUM A , AJMAL A B , et al. A secure and privacy preserved parking recommender system using elliptic curve cryptography and local differential privacy. IEEE Access, 2022, 10, 56410- 56426.
doi: 10.1109/ACCESS.2022.3175829
|
19 |
GURSOY M E , TAMERSOY A , TRUEX S , et al. Secure and utility-aware data collection with condensed local differential privacy. IEEE Transactions on Dependable and Secure Computing, 2021, 18 (5): 2365- 2378.
URL
|
20 |
温依霖, 赵乃良, 曾艳, 等. 基于本地模型质量的客户端选择方法. 计算机工程, 2023, 49 (6): 131- 143.
doi: 10.19678/j.issn.1000-3428.0065658
|
|
WEN Y Y , ZHAO N L , ZENG Y , et al. Client selection method based on local model quality. Computer Engineering, 2023, 49 (6): 131- 143.
doi: 10.19678/j.issn.1000-3428.0065658
|
21 |
|
22 |
FUNG C, YOON C J M, BESCHASTNIKH I. The limitations of federated learning in sybil settings[C]//Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses. [S. l. ]: AAAI Press, 2020: 301-316.
|
23 |
|
24 |
KRIZHEVSKY A , HINTON G . Learning multiple layers of features from tiny images. Handbook of Systemic Autoimmune Diseases, 2009, 6, 65- 72.
URL
|
25 |
PANG B, LEE L. Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Morristown, USA: Association for Computational Linguistics, 2005: 35-41. 10.3115/1219840.1219855
|
26 |
|
27 |
WU R L , CHEN Y L , TAN C Y , et al. MDIFL: robust federated learning based on malicious detection and incentives. Applied Sciences, 2023, 13 (5): 2793.
doi: 10.3390/app13052793
|
28 |
YANG Q , LIU Y , CHENG Y , et al. Federated learning. Morgan & Claypool, 2019, 12, 55- 61.
|
29 |
BIGGIO B , NELSON B , LASKOV P . Support vector machines under adversarial label noise. Journal of Machine Learning Research, 2011, 20 (3): 97- 105.
|
30 |
BERNSTEIN J, ZHAO J W, AZIZZADENESHELI K, et al. SignSGD with majority vote is communication efficient and fault tolerant[EB/OL]. [2023-10-25]. https://arxiv.org/abs/1810.05291v3.
|