[1] CHENG N, LV F, QUAN W, et al. Space/aerial-assisted computing offloading for IoT applications:a learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5):1117-1129. [2] 张维庭,孙呈蕙,王洪超,等.算网资源智能适配与融合调度方法[J].电信科学, 2023, 39(9):12-20. ZHANG W T, SUN C H, WANG H C, et al. Intelligent adaptation and integrated scheduling method for computing and networking resources[J]. Telecommunications Science, 2023, 39(9):12-20.(in Chinese) [3] ZHANG P Y, WANG C, KUMAR N, et al. Space-air-ground integrated multi-domain network resource orchestration based on virtual network architecture:a DRL method[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3):2798-2808. [4] WANG C, LIU L, JIANG C X, et al. Incorporating distributed DRL into storage resource optimization of space-air-ground integrated wireless communication network[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(3):434-446. [5] ZHANG N, ZHANG S, YANG P, et al. Software defined space-air-ground integrated vehicular networks:challenges and solutions[J]. IEEE Communications Magazine, 2017, 55(7):101-109. [6] HE J C, CHENG N, YIN Z S, et al. Service-oriented network resource orchestration in space-air-ground integrated network[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1):1162-1174. [7] GUO H Z, LI J Y, LIU J J, et al. A survey on space-air-ground-sea integrated network security in 6G[J]. IEEE Communications Surveys& Tutorials, 2022, 24(1):53-87. [8] ZHANG P Y, CHEN N, SHEN S G, et al. AI-enabled space-air-ground integrated networks:management and optimization[J]. IEEE Network, 2024, 38(2):186-192. [9] CAO B, ZHANG J T, LIU X, et al. Edge-cloud resource scheduling in space-air-ground-integrated networks for Internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(8):5765-5772. [10] 曾锋,张政,陈志刚.基于深度强化学习的计算卸载与资源分配策略[J].通信学报, 2023, 44(7):124-135. ZENG F, ZHANG Z, CHEN Z G. Computation offloading and resource allocation strategy based on deep reinforcement learning[J]. Journal on Communications, 2023, 44(7):124-135.(in Chinese) [11] CHEN M Z, CHALLITA U, SAAD W, et al. Artificial neural networks-based machine learning for wireless networks:a tutorial[J]. IEEE Communications Surveys& Tutorials, 2019, 21(4):3039-3071. [12] SUNDAR S, CHAMPATI J P, LIANG B. Multi-user task offloading to heterogeneous processors with communication delay and budget constraints[J]. IEEE Transactions on Cloud Computing, 2022, 10(3):1958-1974. [13] ZHANG W T, YANG D, ZHANG C, et al.(Com)2Net:a novel communication and computation integrated network architecture[J]. IEEE Network, 2024, 38(2):35-44. [14] TANG F X, HOFNER H, KATO N, et al. A deep reinforcement learning-based dynamic traffic offloading in Space-Air-Ground Integrated Networks (SAGIN)[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1):276-289. [15] XIE R C, TANG Q Q, WANG Q N, et al. Satellite-terrestrial integrated edge computing networks:architecture, challenges, and open issues[J]. IEEE Network, 2020, 34(3):224-231. [16] SHANG B D, YI Y, LIU L J. Computing over space-air-ground integrated networks:challenges and opportunities[J]. IEEE Network, 2021, 35(4):302-309. [17] 张婷婷,武楠,姚海鹏.天地融合网络智能组网体系架构研究[J].天地一体化信息网络, 2022, 3(3):47-55. ZHANG T T, WU N, YAO H P. Research on intelligent networking architecture for the integrated space-terrestrial networks[J]. Space-Integrated-Ground Information Networks, 2022, 3(3):47-55.(in Chinese) [18] 李斌,刘文帅,费泽松.面向空天地异构网络的边缘计算部分任务卸载策略[J].电子与信息学报, 2022, 44(9):3091-3098. LI B, LIU W S, FEI Z S. Partial computation offloading for mobile edge computing in space-air-ground integrated network[J]. Journal of Electronics& Information Technology, 2022, 44(9):3091-3098.(in Chinese) [19] PENG H X, SHEN X S. DDPG-based resource management for MEC/UAV-assisted vehicular networks[C]//Proceedings of the IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Washington D.C.,USA:IEEE Press, 2020:1-6. [20] CHENG M, ZHU C L, LIN M, et al. An O-MAPPO scheme for joint computation offloading and resources allocation in UAV assisted MEC systems[J]. Computer Communications, 2023, 208:190-199. [21] XIAO Y, SONG Y Q, LIU J. Towards energy efficient resource allocation:when green mobile edge computing meets multi-agent deep reinforcement learning[C]//Proceedings of the IEEE International Conference on Communications. Washington D.C.,USA:IEEE Press, 2022:4056-4061. [22] JIANG Y Y, MAO Y X, WU G X, et al. A collaborative optimization strategy for computing offloading and resource allocation based on multi-agent deep reinforcement learning[J]. Computers and Electrical Engineering, 2022, 103:108278. [23] YU C, VELU A, VINITSKY E, et al. The surprising effectiveness of PPO in cooperative, multi-agent games[EB/OL].[2024-02-11] . https://arxiv.org/abs/2103.01955v4. [24] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL].[2024-02-11] . https://arxiv.org/abs/1707.06347. [25] SCHULMAN J, MORITZ P, LEVINE S, et al. High-dimensional continuous control using generalized advantage estimation[EB/OL].[2024-02-11] . https://arxiv.org/abs/1506.02438v6. [26] KANG H Y, CHANG X L, MIŠI AĆG J, et al. Cooperative UAV resource allocation and task offloading in hierarchical aerial computing systems:a MAPPO-based approach[J]. IEEE Internet of Things Journal, 2023, 10(12):10497-10509. |