1 |
ATASHPAZ-GARGARI E, LUCAS C. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Washington D. C., USA: IEEE Press, 2007: 4661-4667.
|
2 |
PIRHADI S , MAGHOOLI K , MOTEGHAED N Y , et al. Biomarker discovery by imperialist competitive algorithm in mass spectrometry data for ovarian cancer prediction. Journal of Medical Signals and Sensors, 2021, 11 (2): 108- 119.
doi: 10.4103/jmss.JMSS_20_20
|
3 |
MOAYEDI H , AGHEL B , VAFERI B , et al. The feasibility of Levenberg-Marquardt algorithm combined with imperialist competitive computational method predicting drag reduction in crude oil pipelines. Journal of Petroleum Science and Engineering, 2020, 185, 106634.
doi: 10.1016/j.petrol.2019.106634
|
4 |
ILLIAS H A , MOU K J , BAKAR A H A . Estimation of transformer parameters from nameplate data by imperialist competitive and gravitational search algorithms. Swarm and Evolutionary Computation, 2017, 36, 18- 26.
doi: 10.1016/j.swevo.2017.03.003
|
5 |
GERIST S , MAHERI M R . Structural damage detection using imperialist competitive algorithm and damage function. Applied Soft Computing, 2019, 77, 1- 23.
doi: 10.1016/j.asoc.2018.12.032
|
6 |
ABDECHIRI M, FAEZ K, BAHRAMI H. Adaptive Imperialist Competitive Algorithm (AICA)[C]//Proceedings of the 9th IEEE International Conference on Cognitive Informatics. Washington D. C., USA: IEEE Press, 2010: 940-945.
|
7 |
DAVOODI E , BABAEI E , MOHAMMADI-IVATLOO B . Imperialist competitive algorithm with effective assimilation strategy: a comparative study on numerical benchmark functions. IETE Journal of Research, 2020, 66 (5): 697- 710.
doi: 10.1080/03772063.2018.1519403
|
8 |
MAHERI M R , TALEZADEH M . An enhanced imperialist competitive algorithm for optimum design of skeletal structures. Swarm and Evolutionary Computation, 2018, 40, 24- 36.
doi: 10.1016/j.swevo.2017.12.001
|
9 |
ARDEH M A , MENHAJ M B , ESMAILIAN E , et al. EXPLICA: an explorative imperialist competitive algorithm based on the notion of explorers with an expansive retention policy. Applied Soft Computing, 2017, 54, 74- 92.
doi: 10.1016/j.asoc.2017.01.025
|
10 |
XU S H , WANG Y , LU P C . Improved imperialist competitive algorithm with mutation operator for continuous optimization problems. Neural Computing and Applications, 2017, 28 (7): 1667- 1682.
doi: 10.1007/s00521-015-2138-y
|
11 |
SADEGHI J , MOUSAVI S M , NIAKI S T A . Optimizing an inventory model with fuzzy demand, backordering, and discount using a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 2016, 40 (15/16): 7318- 7335.
|
12 |
KAVEH A , RAHMANI P , ESLAMLOU A D . An efficient hybrid approach based on Harris Hawks optimization and imperialist competitive algorithm for structural optimization. Engineering with Computers, 2022, 38 (2): 1555- 1583.
|
13 |
陈娟, 倪志伟, 李华. 基于混合平衡优化算法的疫苗配送路径优化. 计算机工程, 2024, 50 (3): 122- 130.
doi: 10.19678/j.issn.1000-3428.0067180
|
|
CHEN J , NI Z W , LI H . Vaccine delivery route optimization based on hybrid equilibrium optimization algorithm. Computer Engineering, 2024, 50 (3): 122- 130.
doi: 10.19678/j.issn.1000-3428.0067180
|
14 |
付雪, 朱良宽, 黄建平, 等. 基于改进北方苍鹰优化算法的多阈值图像分割. 计算机工程, 2023, 49 (7): 232- 241.
doi: 10.19678/j.issn.1000-3428.0065186
|
|
FU X , ZHU L K , HUANG J P , et al. Multi-threshold image segmentation based on improved northern goshawk optimization algorithm. Computer Engineering, 2023, 49 (7): 232- 241.
doi: 10.19678/j.issn.1000-3428.0065186
|
15 |
CARRASCO J , GARCÍA S , RUEDA M M , et al. Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review. Swarm and Evolutionary Computation, 2020, 54, 100665.
doi: 10.1016/j.swevo.2020.100665
|
16 |
ZHAO X , FANG Y , LIU L , et al. A covariance-based Moth-flame optimization algorithm with Cauchy mutation for solving numerical optimization problems. Applied Soft Computing, 2022, 119, 108538.
doi: 10.1016/j.asoc.2022.108538
|
17 |
STORN R , PRICE K . Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359.
doi: 10.1023/A:1008202821328
|
18 |
DONG X L , LIU S Q , TAO T , et al. A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems. Journal of Zhejiang University (SCIENCE A), 2012, 13 (9): 674- 686.
doi: 10.1631/jzus.A1200072
|
19 |
ALI I R , ELAZIZ M A , LU S F . Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Systems with Applications, 2018, 108, 1- 27.
doi: 10.1016/j.eswa.2018.04.028
|
20 |
CHEN H , HEIDARI A A , CHEN H L , et al. Multi-population differential evolution-assisted Harris Hawks optimization: Framework and case studies. Future Generation Computer Systems, 2020, 111, 175- 198.
doi: 10.1016/j.future.2020.04.008
|
21 |
DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017
|
22 |
ZITZLER E , DEB K , THIELE L . Comparison of multiobjective evolutionary algorithms: empirical results. Medicine, 2000, 8 (2): 173- 195.
|
23 |
HOSSEINI S , AL K A . A survey on the imperialist competitive algorithm metaheuristic: implementation in engineering domain and directions for future research. Applied Soft Computing, 2014, 24, 1078- 1094.
doi: 10.1016/j.asoc.2014.08.024
|
24 |
张大力, 夏红伟, 张朝兴, 等. 改进萤火虫算法及其收敛性分析. 系统工程与电子技术, 2022, 44 (4): 1291- 1300.
|
|
ZHANG D L , XIA H W , ZHANG C X , et al. Improved firefly algorithm and its convergence analysis. Systems Engineering and Electronics, 2022, 44 (4): 1291- 1300.
|
25 |
LI B, TANG Z B. Double-assimilation of prosperity and destruction oriented improved imperialist competitive algorithm with computational thinking[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2022: 1-8.
|
26 |
王贵林, 李斌. 受春秋战国史实启发的帝国竞争改进算法. 计算机应用, 2021, 41 (2): 470- 478.
|
|
WANG G L , LI B . Improved imperialist competitive algorithm inspired by historical facts of Spring and Autumn Period. Journal of Computer Applications, 2021, 41 (2): 470- 478.
|
27 |
李斌, 黄起彬. 面向进制转换和克隆进化的帝国竞争改进算法. 计算机工程与应用, 2022, 58 (5): 208- 224.
|
|
LI B , HUANG Q B . Decimal-binary conversion and clonal evolution oriented improved imperialist competitive algorithm. Computer Engineering and Applications, 2022, 58 (5): 208- 224.
|
28 |
AWAD N H, ALI M Z, SUGANTHAN P N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2017: 372-379.
|
29 |
BREST J, MAUCEC M S, BOSKOVIC B. Single objective real-parameter optimization: algorithm jSO[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2017: 1311-1318.
|
30 |
KUMAR A, MISRA R K, SINGH D. Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2017: 1835-1842.
|
31 |
SALLAM K M, ELSAYED S M, SARKER R A, et al. Multi-method based orthogonal experimental design algorithm for solving CEC2017 competition problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2017: 1350-1357.
|
32 |
TANGHERLONI A, RUNDO L, NOBILE M S. Proactive particles in swarm optimization: a settings-free algorithm for real-parameter single objective optimization problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2017: 1940-1947.
|
33 |
KOMMADATH R, KOTECHA P. Teaching learning based optimization with focused learning and its performance on CEC2017 functions[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2017: 2397-2403.
|
34 |
WANG X F , HAN T , ZHAO H . An estimation of distribution algorithm with multi-leader search. IEEE Access, 2020, 8, 37383- 37405.
doi: 10.1109/ACCESS.2020.2975468
|
35 |
VE AČG EK N , MERNIK M , MATEJ AČG . A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms. Information Sciences, 2014, 277, 656- 679.
doi: 10.1016/j.ins.2014.02.154
|
36 |
BOLUFE-ROHLER A, CHEN S. A multi-population exploration-only exploitation-only hybrid on CEC-2020 single objective bound constrained problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2020: 1-8.
|
37 |
ZHANG G, SHI Y H. Hybrid sampling evolution strategy for solving single objective bound constrained problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2018: 1-7.
|
38 |
BUJOK P, KOLENOVSKY P, JANISCH V, et al. Eigenvector crossover in jDE100 algorithm[C]//Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2020: 1-6.
|
39 |
KADAVY T, PLUHACEK M, VIKTORIN A, et al. Self-organizing migrating algorithm with clustering-aided migration and adaptive perturbation vector control[C]//Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York, USA: ACM Press, 2021: 1916-1922.
|
40 |
VIKTORIN A, SENKERIK R, PLUHACEK M, et al. DISH-XX solving CEC2020 single objective bound constrained numerical optimization benchmark[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Washington D. C., USA: IEEE Press, 2020: 1-8.
|