作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (6): 155-173. doi: 10.19678/j.issn.1000-3428.0069309

• 人工智能与模式识别 • 上一篇    下一篇

基于透镜反向学习和差分进化的帝国竞争改进算法

李斌1,2,*(), 潘智成2,3   

  1. 1. 福建理工大学机械与汽车工程学院, 福建 福州 350118
    2. 福建理工大学福建省大数据挖掘与应用技术重点实验室, 福建 福州 350118
    3. 福建理工大学计算机科学与数学学院, 福建 福州 350118
  • 收稿日期:2024-01-26 出版日期:2025-06-15 发布日期:2024-05-08
  • 通讯作者: 李斌
  • 基金资助:
    教育部人文社会科学研究规划基金(19YJA630031)

Improved Imperialist Competitive Algorithm Based on Lens Opposition-based Learning and Differential Evolution

LI Bin1,2,*(), PAN Zhicheng2,3   

  1. 1. School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, China
    2. Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou 350118, Fujian, China
    3. School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, Fujian, China
  • Received:2024-01-26 Online:2025-06-15 Published:2024-05-08
  • Contact: LI Bin

摘要:

针对帝国竞争算法(ICA)收敛过快导致求解高维复杂问题容易陷入局部最优以及全局寻优能力不足等问题, 提出一种基于透镜反向学习和差分进化的帝国竞争改进算法LODE-IICA。首先, 引入透镜反向学习差分进化机制, 周期性地为算法种群提供新的进化方式和平衡各个帝国势力, 帮助算法种群跳出局部最优; 其次, 将精英保留策略植入到算法演化中, 重新分配殖民地, 维持种群多样性; 最后, 引入动态同化系数, 协调算法在不同阶段探索, 提高算法的稳定性。仿真实验中, 采用标准函数测试集、CEC2017测试集及CEC2020测试集检验LODE-IICA在多个维度下对不同类型函数的寻优能力。选取在标准函数测试集、CEC2017测试集和CEC2020测试集中具有代表性的15种改进算法与LODE-IICA进行实验结果比较, 结果显示, LODE-IICA引入的机制在大多数情况下有效地提高了算法性能, 同时具备较好的收敛速度和寻优能力。

关键词: 帝国竞争算法, 透镜反向学习, 差分进化, 精英保留, 同化系数

Abstract:

As the Imperialist Competitive Algorithm (ICA) converges rapidly, solutions of high-dimensional complex problems easily fall into local optima, resulting in an insufficient global optimization ability. To address this issue, this paper proposes an improved ICA Algorithm Based on Lens Opposition-based Learning and Differential Evolution (LODE-IICA). First, a dynamic lens opposition-based learning differential evolution mechanism is introduced to periodically provide new evolutionary approaches and balance the forces of various empires for the algorithmic populations to help them jump out of the local optimum. Second, elite preservation strategies are introduced in the algorithmic evolution to redistribute colonies for maintaining population diversity. Finally, dynamic assimilation coefficients are introduced to coordinate the algorithm in different stages of exploration and improve its stability. In the simulation experiments, the standard function test set and the CEC2017 and CEC2020 test sets are used to examine the ability of LODE-IICA to find the optima of different types of functions under multiple dimensions. 15 improved algorithms representative of the standard function test set and the CEC2017 and CEC2020 test sets are selected, and the experimental results are compared with the LODE-IICA results. The results show that the mechanism introduced by LODE-IICA is effective in improving the performance of the algorithm in most cases, along with a better convergence speed and optima-finding ability.

Key words: Imperialist Competitive Algorithm (ICA), lens opposition-based learning, differential evolution, elite preservation, assimilation coefficients