作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (6): 146-154. doi: 10.19678/j.issn.1000-3428.0069284

• 人工智能与模式识别 • 上一篇    下一篇

融合可变形核和自注意力的点云分类分割边卷积网络

陈思帆1, 杨家志1,2,*(), 黄琳3, 吕志玮1, 沈露1   

  1. 1. 桂林理工大学计算机科学与工程学院, 广西 桂林 541006
    2. 桂林航天工业学院机电工程学院, 广西 桂林 541004
    3. 桂林理工大学物理与电子信息工程学院, 广西 桂林 541006
  • 收稿日期:2024-01-22 出版日期:2025-06-15 发布日期:2025-06-05
  • 通讯作者: 杨家志
  • 基金资助:
    国家自然科学基金(62166012)

Edge Convolutional Network for Point Cloud Classification and Segmentation Incorporated Deformable Kernel and Self-Attention

CHEN Sifan1, YANG Jiazhi1,2,*(), HUANG Lin3, Lü Zhiwei1, SHEN Lu1   

  1. 1. School of Computer Science and Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China
    2. School of Mechanical and Electrical Engineering, Guilin University of Aerospace Technology, Guilin 541004, Guangxi, China
    3. School of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China
  • Received:2024-01-22 Online:2025-06-15 Published:2025-06-05
  • Contact: YANG Jiazhi

摘要:

点云数据具有无序性和离散分布的特点, 传统动态图卷积方法在处理点云数据时仍充满挑战, 无法准确地表示三维点间的特征对应关系。为此, 提出一种融合可变形核和自注意力的点云分类分割边卷积网络DKSA-Net, 该网络由DKConv (Deformable Kernels Edge Convolution)模块和SAConv (Self-Attention Edge Convolution)模块组成。通过融合可变形核与边卷积构建DKConv模块, 能够动态学习点的特征, 生成可变形核, 不会忽略不同特征之间的对应关系, 从而更好地处理不同特征之间的对应关系。引入自注意力机制, 并与边卷积结合构建SAConv模块, 能够对特征进行更细粒度的特征提取, 充分捕捉点云的重要特征, 增强模型的判别能力。实验结果表明, DKSA-Net在ModelNet40和ShapeNet数据集上取得出色性能, 分别达到93.4%的总体精度(OA)、90.7%的平均精度(mAcc)和86.1%的平均并交比(mIoU), 且有着较低模型复杂度和较好鲁棒性, 具有优秀的点云数据处理能力。

关键词: 可变形核, 自注意力, 点云分类, 点云分割, 深度学习

Abstract:

Owing to the unordered and discrete nature of point cloud data, traditional dynamic graph convolution method faces significant challenges in processing this data, making it difficult to accurately represent feature correspondences between 3D points. To address this issue, a network called DKSA-Net is proposed, which incorporates deformable kernels and self-attention. This network consists of two main modules: Deformable Kernels edge Convolution (DKConv) and Self-Attention edge Convolution (SAConv). By integrating deformable kernels with edge convolution to construct the DKConv module, the network can dynamically learn point features, generate deformable kernels, and maintain feature correspondences, thereby improving the handling of feature correspondences. In addition, by introducing the self-attention mechanism and combining it with edge convolution to construct the SAConv module, the network can perform finer-grained feature extraction, fully capture important point cloud features, and enhance the discriminative ability of the model. The experimental results show that DKSA-Net achieves excellent performance on the ModelNet40 and ShapeNet datasets, with an Overall Accuracy (OA) of 93.4%, an average Accuracy (mAcc) of 90.7%, and an average Intersection-over-Union (mIoU) of 86.1%. Furthermore, it demonstrates relatively low model complexity and high robustness, showcasing exceptional capabilities in processing point cloud data.

Key words: deformable kernel, self-attention, point cloud classification, point cloud segmentation, deep learning