作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (4): 85-96. doi: 10.19678/j.issn.1000-3428.0069313

• 人工智能与模式识别 • 上一篇    下一篇

嵌入房间类别和边界约束的目标驱动导航算法

罗锦源, 谷雨*()   

  1. 杭州电子科技大学自动化学院, 浙江 杭州 310018
  • 收稿日期:2024-01-29 出版日期:2025-04-15 发布日期:2024-06-03
  • 通讯作者: 谷雨
  • 基金资助:
    浙江省自然科学基金(LY21F030010)

Target-driven Navigation Algorithm Embedded with Room Category and Boundary Constraints

LUO Jinyuan, GU Yu*()   

  1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
  • Received:2024-01-29 Online:2025-04-15 Published:2024-06-03
  • Contact: GU Yu

摘要:

在室内环境中, 不同房间类别的相同物体具有完全不同的用途, 设计附加房间类别约束的目标驱动导航任务, 在机器人导航、智能家居等领域具有重要应用。为提高房间类别约束目标导航任务的成功率, 设计一种结合映射模块、搜索策略、运动控制策略和房间分类模块的模块化导航算法。输入导航任务后, 映射模块结合RGB-D相机数据和惯导获得的姿态信息在线构建语义地图, 用于记忆已探索过的环境。在基于近端策略优化算法(PPO)框架实现搜索策略时, 为尽快找到地图上最可能存在目标物的坐标, 提出边界点簇的概念, 将其中心坐标作为中继点, 根据每个簇包含的边界点数量评定其中心点探索价值并排序, 用于约束全局目标点, 同时在搜索策略奖励函数中引入边界点约束, 以提高目标点落入已探索区域时的搜索效率。在基于运动控制策略控制机器人向着全局目标点移动的过程中, 针对机器人无法识别房间类别的问题, 采用YOLOv8_cls训练得到房间分类模块辅助进行决策, 从而更好地完成导航任务。分别在仿真环境和现实环境中验证导航任务的可完成性以及算法的有效性。实验结果表明, 所提出的算法相比于同样使用深度强化学习(DRL)作为搜索策略的SemExp (Semantic Exploration)算法, 在未附加以及附加房间类别约束的两类导航任务上, 能够更快地完成地图探索并且导航成功率分别提高2.0%和4.0%, 该算法能够更好地理解环境的语义信息, 完成未知环境中的目标物搜索等导航任务。

关键词: 机器人室内导航, 目标驱动, 房间类别约束, 搜索策略, 边界点约束

Abstract:

In indoor environments, the same object may have completely different uses depending on the room category. Thus, designing target-driven navigation tasks with room category constraints has important applications in robot navigation, smart home, and other fields. To improve the success rate of room category constrained target navigation task, a modular navigation algorithm is designed, combining search and motion control strategies with mapping and room classification modules. Given a navigation task as input, the mapping module combines RGB-D camera data and pose information, to construct an online semantic map that remembers environments that have been explored. The concept of boundary point cluster is proposed to quickly locate the most likely coordinates of the target object on the map as soon as possible when implementing the search strategy based on the proximal policy optimization algorithm framework. The central coordinates of these clusters are used as relay points. According to the number of boundary points contained in each cluster, the exploration value of the central point is evaluated and sorted and used to constrain the global target points. Furthermore, the concept of boundary points is introduced into the reward function of the search policy, to improve the search efficiency when the target points fall within the explored area. In response to the issue of the robot's inability to recognize room categories, YOLOv8_cls is trained to develop a room classification module based on the motion control strategy, to guide the robot towards the global target point to assist in decision-making, thereby better fulfilling navigation requirements. The feasibility of the navigation task and the effectiveness of the algorithm were verified in both simulated and real environments. Experimental results demonstrate that compared to the Semantic Exploration (SemExp) algorithm which employs Deep Reinforcement Learning (DRL) for search strategies, The proposed algorithm achieves faster map exploration and increased navigation success rates for two types of navigation tasks, with and without room category constraints by 2.0% and 4.0%, respectively. It demonstrates a better understanding of semantic information in the environment, enabling the completion of navigation tasks such as target object search in unknown environments.

Key words: robot indoor navigation, target-driven, room category constraint, search strategy, boundary point constraint