1 |
ZHU C X , DASTANI M , WANG S H . A survey of multi-agent deep reinforcement learning with communication. Autonomous Agents and Multi-Agent Systems, 2024, 38 (1): 4.
doi: 10.1007/s10458-023-09633-6
|
2 |
|
3 |
TABISH R , MIKAYEL S , SCHROEDER D W C , et al. Monotonic value function factorisation for deep multi-agent reinforcement learning. Journal of Machine Learning Research, 2020, 21 (178): 1- 51.
doi: 10.48550/arXiv.1803.11485
|
4 |
王涵, 俞扬, 姜远. 基于通信的多智能体强化学习进展综述. 中国科学: 信息科学, 2022, 52 (5): 742- 764.
URL
|
|
WANG H , YU Y , JIANG Y . Review of the progress of communication-based multi-agent reinforcement learning. Scientia Sinica (Informationis), 2022, 52 (5): 742- 764.
URL
|
5 |
罗彪, 胡天萌, 周育豪, 等. 多智能体强化学习控制与决策研究综述. 自动化学报, 2025, 51 (3): 510- 539.
doi: 10.16383/j.aas.c240392
|
|
LUO B , HU T M , ZHOU Y H , et al. Survey on multi-agent reinforcement learning for control and decision-making. Acta Automatica Sinica, 2025, 51 (3): 510- 539.
doi: 10.16383/j.aas.c240392
|
6 |
丁世飞, 杜威, 张健, 等. 多智能体深度强化学习研究进展. 计算机学报, 2024, 47 (7): 1547- 1567.
doi: 10.11897/SP.J.1016.2024.01547
|
|
DING S F , DU W , ZHANG J , et al. Research progress of multi-agent deep reinforcement learning. Chinese Journal of Computers, 2024, 47 (7): 1547- 1567.
doi: 10.11897/SP.J.1016.2024.01547
|
7 |
MAO H Y , ZHANG Z C , XIAO Z , et al. Learning agent communication under limited bandwidth by message pruning. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (4): 5142- 5149.
doi: 10.1609/aaai.v34i04.5957
|
8 |
DING Z , HUANG T , LU Z . Learning individually inferred communication for multi-agent cooperation. Advances in Neural Information Processing Systems, 2020, 33, 22069- 22079.
doi: 10.48550/arXiv.2006.06455
|
9 |
WANG Y, ZHONG F, XU J, et al. ToM2C: target-oriented multi-agent communication and cooperation with theory of mind[C]//Proceedings of the 10th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2022: 1-10.
|
10 |
HU S C, SHEN L, ZHANG Y, et al. Learning multi-agent communication from graph modeling perspective[C]//Proceedings of the 12th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2024: 1-10.
|
11 |
WANG X, LI X, SHAO J, et al. AC2C: adaptively controlled two-hop communication for multi-agent reinforcement learning[C]//Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems. Washington D. C., USA: IEEE Press, 2023: 427-435.
|
12 |
ZHANG S , LIN J Y , ZHANG Q . Succinct and robust multi-agent communication with temporal message control. Advances in Neural Information Processing Systems, 2020, 33, 17271- 17282.
|
13 |
GUAN C , CHEN F , YUAN L , et al. Efficient multi-agent communication via self-supervised information aggregation. Advances in Neural Information Processing Systems, 2022, 35, 1020- 1033.
|
14 |
KIM D, MOON S C, HOSTALLERO D, et al. Learning to schedule communication in multi-agent reinforcement learning[C]//Proceedings of the 7th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2019: 1-10.
|
15 |
YUAN L , WANG J H , ZHANG F X , et al. Multi-agent incentive communication via decentralized teammate modeling. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (9): 9466- 9474.
doi: 10.1609/aaai.v36i9.21179
|
16 |
GUO X D, SHI D M, FAN W H. Scalable communication for multi-agent reinforcement learning via transformer-based email mechanism[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence. Macao, China: [s. n.], 2023: 126-134.
|
17 |
LIU Z, WAN L, SUI X, et al. Deep hierarchical communication graph in multi-agent reinforcement learning[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence. Macao, China: [s. n.], 2023: 208-216.
|
18 |
PINA R, SILVA V, ARTAUD C, et al. Efficient role-based communication for multi-agent systems[C]//Proceedings of the Autonomous Agents and Multi-Agent Systems. Washington D. C., USA: IEEE Press, 2024: 1-10.
|
19 |
DUAN W, LU J, XUAN J Y. Group-aware coordination graph for multi-agent reinforcement learning[C]// Proceedings of the 33rd International Joint Conference on Artificial Intelligence. Jeju Island, Republic of Korea: [s. n.], 2024: 3926-3934.
|
20 |
WANG T H, DONG H, LESSER V, et al. ROMA: multi-agent reinforcement learning with emergent roles[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA: ACM Press, 2020, 1-10.
|
21 |
WANG T, GUPTA T, MAHAJAN A, et al. RODE: learning roles to decompose multi-agent tasks[C]//Proceedings of the 9th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2021: 1-20.
|
22 |
YANG M , ZHAO J , HU X , et al. LDSA: learning dynamic subtask assignment in cooperative multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 2022, 35, 1698- 1710.
doi: 10.48550/arXiv.2205.02561
|
23 |
YANG M , ZHAO K Y , WANG Y M , et al. Team-wise effective communication in multi-agent reinforcement learning. Autonomous Agents and Multi-Agent Systems, 2024, 38 (2): 36.
doi: 10.1007/s10458-024-09665-6
|
24 |
ALEMI A A, FISCHER I, DILLON J V, et al. Deep variational information bottleneck[C]//Proceedings of the 5th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2017: 1-10.
|
25 |
SAMVELYAN M, RASHID T, SCHRÖDER D W C, et al. The StarCraft multi-agent challenge[C]//Proceedings of the 18th International Conference on Autonomous Agents and Multi-Agent Systems. Washington D. C., USA: IEEE Press, 2019: 2186-2188.
|
26 |
ZHANG S , ZHANG Q , LIN J Y . Efficient communication in multi-agent reinforcement learning via variance based control. Advances in Neural Information Processing Systems, 2019, 32, 1- 10.
URL
|