1 |
赵妍妍, 秦兵, 刘挺. 文本情感分析. 软件学报, 2010, 21 (8): 1834- 1848.
doi: 10.3724/SP.J.1001.2010.03832
|
|
ZHAO Y Y , QIN B , LIU T . Sentiment analysis. Journal of Software, 2010, 21 (8): 1834- 1848.
doi: 10.3724/SP.J.1001.2010.03832
|
2 |
刘漳辉, 杨耀东, 陈羽中. 一种用于方面级情感分析的关系注意力图卷积网络. 小型微型计算机系统, 2023, 44 (4): 752- 758.
|
|
LIU Z H , YANG Y D , CHEN Y Z . Relational attention based graph convolutional network for aspect-level sentiment analysis. Journal of Chinese Computer Systems, 2023, 44 (4): 752- 758.
|
3 |
FAN Z F, WU Z, DAI X Y, et al. Target-oriented opinion words extraction with target-fused neural sequence labeling[C]//Proceedings of the 2019 Conference of the North. [S. l.]: ACL, 2019: 2509-2518.
|
4 |
PENG H Y , XU L , BING L D , et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (5): 8600- 8607.
doi: 10.1609/aaai.v34i05.6383
|
5 |
ZHANG M, QIAN T Y. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. [S. l.]: ACL, 2020: 3540-3549.
|
6 |
CHEN H, ZHAI Z P, FENG F X, et al. Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. [S. l.]: ACL, 2022: 2974-2985.
|
7 |
ALBADANI B , DONG J , SHI R H , et al. SMGNN: span-to-span multi-channel graph neural network for aspect-sentiment triplet extraction. Journal of Intelligent Information Systems, 2023, 61 (3): 695- 715.
doi: 10.1007/s10844-023-00794-0
|
8 |
SHI X F , HU M , DENG J W , et al. Integration of multi-branch GCNs enhancing aspect sentiment triplet extraction. Applied Sciences, 2023, 13 (7): 4345.
doi: 10.3390/app13074345
|
9 |
HU Z D , WANG Z X , WANG Y L , et al. Aspect sentiment triplet extraction incorporating syntactic constituency parsing tree and commonsense knowledge graph. Cognitive Computation, 2023, 15 (1): 337- 347.
doi: 10.1007/s12559-022-10078-4
|
10 |
DOZAT T. Deep biaffine attention for neural dependency parsing[C]//Proceedings of the 5th International Conference on Learning Representations. [S. l.]: ACL, 2017: 24-26.
|
11 |
ZHANG C, LI Q C, SONG D W, et al. A multi-task learning framework for opinion triplet extraction[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020. [S. l.]: ACL, 2020: 819-828.
|
12 |
WU Z, YING C C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020. [S. l.]: ACL, 2020: 2576-2585.
|
13 |
XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. [S. l.]: ACL, 2020: 3427-3434.
|
14 |
LIU Y X , ZHOU Y , LI Z M , et al. HIM: an end-to-end hierarchical interaction model for aspect sentiment triplet extraction. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2023, 31, 2272- 2285.
doi: 10.1109/TASLP.2023.3282379
|
15 |
XU L, CHIA Y K, BING L D. Learning span-level interactions for aspect sentiment triplet extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l.]: ACL, 2021: 4755-4766.
|
16 |
CHEN Y Q, CHEN K M, SUN X, et al. A span-level bidirectional network for aspect sentiment triplet extraction[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. [S. l.]: ACL, 2022: 4300-4309.
|
17 |
XU K , LI F , XIE D D , et al. Revisiting aspect-sentiment-opinion triplet extraction: detailed analyses towards a simple and effective span-based model. ACM Transactions on Audio, Speech, and Language Processing, 2022, 30, 2918- 2927.
URL
|
18 |
|
19 |
LI D X, YANG Z H, LAN Y Q, et al. Simple approach for aspect sentiment triplet extraction using span-based segment tagging and dual extractors[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2023: 2374-2378.
|
20 |
LIANG S , WEI W , MAO X L , et al. STAGE: span tagging and greedy inference scheme for aspect sentiment triplet extraction. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (11): 13174- 13182.
doi: 10.1609/aaai.v37i11.26547
|
21 |
YAN H, DAI J Q, JI T, et al. A unified generative framework for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. [S. l.]: ACL, 2021: 2416-2429.
|
22 |
MAO Y , SHEN Y , YU C , et al. A joint training dual-MRC framework for aspect based sentiment analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (15): 13543- 13551.
doi: 10.1609/aaai.v35i15.17597
|
23 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. [S. l.]: ACL, 2019: 4171-4186.
|
24 |
DAI D W , CHEN T , XIA S Y , et al. Double embedding and bidirectional sentiment dependence detector for aspect sentiment triplet extraction. Knowledge-Based Systems, 2022, 253, 109506.
doi: 10.1016/j.knosys.2022.109506
|
25 |
ZHAO Y C, MENG K, LIU G S, et al. Multi-task dual-tree network for aspect sentiment triplet extraction[C]//Proceedings of the 29th International Conference on Computational Linguistics. [S. l.]: ACL, 2022: 7065-7074.
|
26 |
LI X T, LI D F. Double policy network for aspect sentiment triplet extraction[C]//Proceedings of the 27th AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2023: 16256-16257.
|
27 |
YUAN L , WANG J , YU L C , et al. Encoding syntactic information into transformers for aspect-based sentiment triplet extraction. IEEE Transactions on Affective Computing, 2024, 15 (2): 722- 735.
doi: 10.1109/TAFFC.2023.3291730
|
28 |
LIU S , LU T T , LI K W , et al. Aspect sentiment triplet extraction based on data augmentation and task feedback. Journal of Intelligent Information Systems, 2024, 62 (6): 1659- 1683.
doi: 10.1007/s10844-024-00855-y
|
29 |
|
30 |
CHEN Z X, HUANG H, LIU B, et al. Semantic and syntactic enhanced aspect sentiment triplet extraction[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. [S. l.]: ACL, 2021: 1474-1483.
|