[1] 张晓凯,郭道省,张邦宁.空天地一体化网络研究现状与新技术的应用展望[J].天地一体化信息网络, 2021(4):19-26. ZHANG X K, GUO D X, ZHANG B N. Research status of space-air-ground integrated network and application prospects of new technologies[J]. Space-Integrated-Ground Information Networks, 2021(4):19-26.(in Chinese) [2] 郑爽,张兴,王文博.低轨卫星通信网络路由技术综述[J].天地一体化信息网络, 2022(3):97-105. ZHENG S, ZHANG X, WANG W B. Survey of low earth orbit satellite communication network routing technology[J]. Space-Integrated-Ground Information Networks, 2022(3):97-105.(in Chinese) [3] 高新成,张宣,樊本航,等.基于改进的CNN-Transformer加密流量分类方法[J].吉林大学学报(理学版), 2024, 62(3):683-690. GAO X C, ZHANG X, FAN B H, et al. Improved CNN-Transformer based encrypted traffic classification method[J]. Journal of Jilin University (Science Edition), 2024, 62(3):683-690.(in Chinese) [4] MADHUKAR A, WILLIAMSON C. A longitudinal study of P2P traffic classification[C]//Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation. Washington D.C., USA:IEEE Press, 2006:179-188. [5] MOORE A W, PAPAGIANNAKI K. Toward the accurate identification of network applications[M]. Berlin, Germany:Springer, 2005. [6] SEN S, SPATSCHECK O, WANG D M, et al. Accurate, scalable in-network identification of P2P traffic using application signatures[C]//Proceedings of the 13th International Conference on World Wide Web. New York, USA:ACM Press, 2004:512-521. [7] 李腾. SDN中基于机器学习的网络流量分类研究[D].青岛:青岛理工大学, 2023. LI T. Research on network traffic classification based on machine learning in SDN[D]. Qingdao:Qingdao University of Technology, 2023.(in Chinese) [8] 纪守领,杜天宇,邓水光,等.深度学习模型鲁棒性研究综述[J].计算机学报, 2022, 45(1):190-206. JI S L, DU T Y, DENG S G, et al. Robustness certification research on deep learning models:a survey[J]. Chinese Journal of Computers, 2022, 45(1):190-206.(in Chinese) [9] 于治平,刘彩霞,刘树新,等.基于机器学习的网络流量分类综述[J].信息工程大学学报, 2023, 24(4):447-453. YU Z P, LIU C X, LIU S X, et al. Overview of network traffic classification based on machine learning[J]. Journal of Information Engineering University, 2023, 24(4):447-453.(in Chinese) [10] 郭益民.基于深度学习的Android恶意应用网络流量检测方法[D].上海:上海交通大学, 2020. GUO Y M. Network traffic detection method of Android malicious application based on deep learning[D]. Shanghai:Shanghai Jiao Tong University, 2020.(in Chinese) [11] GILLIOZ A, CASAS J, MUGELLINI E, et al. Overview of the Transformer-based models for NLP tasks[C]//Proceedings of the 15th Conference on Computer Science and Information Systems. Washington D.C., USA:IEEE Press, 2020:179-183. [12] CHANG Z X, CAI Q Y. Enhanced vision Transformer with dual-dimensional self-attention for image recognition[C]//Proceedings of the IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI). Washington D.C., USA:IEEE Press, 2023:346-351. [13] 孙懿,高见,顾益军.融合一维Inception结构与ViT的恶意加密流量检测[J].计算机工程, 2023, 49(1):154-162. SUN Y, GAO J, GU Y J. Malicious encrypted traffic detection integrating one-dimensional Inception structure and ViT[J]. Computer Engineering, 2023, 49(1):154-162.(in Chinese) [14] 刘贺,张文波.一种基于ViT改进的轻量化恶意流量识别方法[J].小型微型计算机系统, 2024, 45(2):388-395. LIU H, ZHANG W B. Improved light-weight malicious traffic identification method based on ViT[J]. Journal of Chinese Computer Systems, 2024, 45(2):388-395.(in Chinese) [15] 刘帅.基于机器学习的加密流量识别研究与实现[D].北京:北京邮电大学, 2020. LIU S. Research and implementation of encrypted traffc recognition based on machine learning[D]. Beijing:Beijing University of Posts and Telecommunications, 2020.(in Chinese) [16] ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning[C]// Proceedings of the IEEE Conference on Local Computer Networks. Washington D.C., USA:IEEE Press, 2005:250-257. [17] CHEESEMAN P, STUTZ J. Bayesian classification (AutoClass):theory and results[J]. Advances in knowledge discovery and data mining, 1996, 180:153-180. [18] NetMate[EB/OL].[2024-02-11] . http://sourceforge.net/projects/netmate-meter/. [19] ERMAN J, MAHANTI A, ARLITT M, et al. Identifying and discriminating between Web and peer-to-peer traffic in the network core[C]//Proceedings of the 16th International Conference on World Wide Web. New York, USA:ACM Press, 2007:883-892. [20] WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]//Proceedings of the IEEE International Conference on Intelligence and Security Informatics (ISI). Washington D.C., USA:IEEE Press, 2017:43-48. [21] WANG W, ZHU M, ZENG X W, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the International Conference on Information Networking. Washington D.C., USA:IEEE Press, 2017:712-717. [22] ZOU Z, GE J G, ZHENG H B, et al. Encrypted traffic classification with a convolutional long short-term memory neural network[C]// Proceedings of the IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Washington D.C., USA:IEEE Press, 2018:329-334. [23] LOTFOLLAHI M, SIAVOSHANI M J, ZADE R S H, et al. Deep packet:a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020, 24(3):1999-2012. [24] DAINOTTI A, PESCAPE A, CLAFFY K C. Issues and future directions in traffic classification[J]. IEEE Network, 2012, 26(1):35-40. [25] NETRESE C. SplitCap[EB/OL].[2024-02-11] . https://www.netresrc.com/?page=SplitCap. [26] LIU N, HAN J W. DHSNet:deep hierarchical saliency network for salient object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2016:678-686. |