[1] RANFT B, STILLER C.The role of machine vision for intelligent vehicles[J].IEEE Transactions on Intelligent Vehicles, 2016, 9:8-19. [2] 梁敏健.智能车行车环境视觉感知关键技术研究[D].西安:长安大学, 2017. LIANG M J.Research on key technologies of visual perception of intelligent vehicle driving environment[D].Xi'an:Chang'an University, 2017.(in Chinese) [3] CAGLIERO L, CANALE L, FARINETTI L.VISA:a supervised approach to indexing video lectures with semantic annotations[C]//Proceedings of 2019 IEEE Annual Computer Software and Applications Conference.Washington D.C., USA:IEEE Press, 2019:226-235. [4] LIU X.A geographic opportunistic forwarding strategy for vehicular named data networking[M].Berlin, Germany:Springer, 2016. [5] SHANG L, WANG X, WANG P, et al.Computation offloading management in vehicular edge network under imperfect CSI[C]//Proceedings of 2019 IEEE International Conference on Information Communication and Signal Processing.Washington D.C., USA:IEEE Press, 2019:199-203. [6] GU B, ZHOU Z.Task offloading in vehicular mobile edge computing:a matching-theoretic framework[J].Vehicular Technology Magazine, 2019, 14(3):100-106. [7] ZHANG K, ZHU Y, LING S, et al.Deep learning embowered task off-roading for mobile edge computing in urban information[J].IEEE Internet of Things Journal, 2019, 6(5):7635-7647. [8] CAO H, CAI J.Distributed multiuser computation offlooding for cludlet-based mobile computing:agame-theoretic machine leading approach[J].IEEE Transactions on Vehicular Technology, 2017, 67(1):752-764. [9] 吕灵灵, 杨志鹏, 张磊.基于合约设计的移动边缘计算任务卸载策略研究[J].控制与决策, 2019, 34(11):97-105. LÜ L L, YANG Z P, ZHANG L.Control theory based task offlooding stratage of mobile edge computing[J].Control and Decision, 2019, 34(11):97-105.(in Chinese) [10] HUANG X, XU K, LAI C, et al.Energy-efficient offloading decision-making for mobile edge computing in vehicular networks[J].EURASIP Journal on Wireless Communi-cations and Networking, 2020(1):35-39. [11] 赵海涛, 朱银阳, 丁仪, 等.车联网中基于移动边缘计算的内容感知分类卸载算法研究[J].电子与信息学报, 2020, 42(1):20-27. ZHAO H T, ZHU Y Y, DING Y, et al.Research on content-aware classification offloading algorithm based on mobile edge calculation in the Internet of vehicles[J].Journal of Electronics and Information Technology, 2020, 42(1):20-27.(in Chinese) [12] LUO G Y, YUAN Q, ZHOU H B, et al.Cooperative vehicular content distribution in edge computing assisted 5G-VANET[J].China Communications, 2018, 15(7):1-17. [13] TAO X Y, OTA K, DONG M X, et al.Performance guaranteed computation offloading for mobile-edge cloud computing[J].IEEE Wireless Communications Letters, 2017, 6(6):774-777. [14] MACHARDY Z, KHAN A, OBANA K, et al.V2X access technologies:regulation, research, and remaining challenges[J].IEEE Communications Surveys & Tutorials, 2018, 20(3):1858-1877. [15] SZE V, CHEN Y H, YANG T J, et al.Efficient processing of deep neural networks:a tutorial and survey[J].Proceedings of the IEEE, 2017, 105(12):2295-2329. [16] CHEN Y H, KRISHNA T, EMER J S, et al.Eyeriss:an energy-efficient reconfigurable accelerator for deep convolutional neural networks[EB/OL].[2020-10-05].https://www.rle.mit.edu/eems/wp-content/uploads/2016/02/eyeriss_isscc_2016.pdf. [17] JU M, JUNG H, CHE H.A performance analysis methodology for multicore, multithreaded processors[J].IEEE Transactions on Computers, 2014, 63(2):276-289. [18] 张海波, 栾秋季, 朱江, 等.车辆异构网中基于移动边缘计算的任务卸载与资源分配[J].物联网学报, 2018, 2(3):36-43. ZHANG H B, LUAN Q J, ZHU J, et al.Task unloading and resource allocation based on moving edge computing in heterogeneous vehicle networks[J].Journal of Internet of Things, 2018, 2(3):36-43.(in Chinese) [19] MAO Y, ZHANG J, LETAIEF K B.Dynamic computation offloading for mobile-edge computing with energe harvesting procedures[J].IEEE Journal on Selected Areas in Communications, 2016, 34(12):3590-3605. [20] HUANG X, XU K, LAI C, et al.Energy-efficient offloading decision-making for mobile edge computing in vehicular networks[EB/OL].[2020-10-05].https://jwcn-eurasipjournals.springeropen.com/track/pdf/10.1186/s13638-020-1652-5.pdf. [21] HUANG W, RIBEIRO A R.Hierarchical clustering given confidence intervals of metric distances[J].IEEE Transactions on Signal Processing, 2018, 8:2600-2615. [22] CHASLOT G M, WINANDS M H, HERIK H J.Parallel Monte-Carlo tree search[EB/OL].[2020-10-05].https://dke.maastrichtuniversity.nl/m.winands/documents/multithreadedMCTS2.pdf. [23] LIM E J, AHN S Y, WAN C.Accelerating training of DNN in distributed machine learning system with shared memory[C]//Proceedings of 2017 International Conference on Information and Communication Technology.Washington D.C., USA:IEEE Press, 2017:1209-1212. [24] HUANG Y, SONG R, XU K, et al.Deep learning based inverse scattering with structural similarity loss functions[J].IEEE Sensors Journal, 2021, 21(4):4900-4907. [25] XUE X, YAN F, PAN B, et al.Performance assessment of OPSquare data center network with elastic allocation of WDM transceivers[C]//Proceedings of 2018 International Conference on Transparent Optical Networks.Washington D.C., USA:IEEE Press, 2018:1-4. [26] GU H, DONG Y, CAO T.Data driven QoE-QoS association modeling of conversational video[C]//Proceedings of 2019 IEEE Global Conference on Signal and Information Processing.Washington D.C., USA:IEEE Press, 2019:1-4. [27] MIETTINEN A P, NURMINEN J K.Energy efficiency of mobile clients in cloud computing[C]//Proceedings of USENIX Conference on Hot Topics in Cloud Computing.[S.l.]:USENIX Association, 2010:1-7. [28] ZHANG S, XIE Y, WAN J, et al.WiderPerson:a diverse dataset for dense pedestrian detection in the wild[J].IEEE Transactions on Multimedia, 2019, 22(2):380-393. [29] LIU Q, ZHOU S, HUI Y.Computation offloading scheme to improve QoE in vehicular networks with mobile edge computing[C]//Proceedings of 2018 International Conference on Wireless Communications and Signal Processing.Washington D.C., USA:IEEE Press, 2018:1-5. [30] RAJA G, GANAPATHISUBRAMANIYAN A, ANBALAGAN S, et al.Intelligent reward-based data offloading in next-generation vehicular networks[J].IEEE Internet of Things Journal, 2020, 7(5):3747-3758. |