[1] Statista.Forecast number of mobile devices worldwide from 2020 to 2025[EB/OL].[2022-04-02].https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide. [2] LIU L Y,LI H Y,GRUTESER M.Edge assisted real-time object detection for mobile augmented reality[C]//Proceedings of the 25th Annual International Conference on Mobile Computing and Networking.New York,USA:ACM Press,2019:1-16. [3] ZHANG H,ANANTHANARAYANAN G,BODIK P,et al.Live video analytics at scale with approximation and delay-tolerance[C]//Proceedings of the 14th Symposium on Networked Systems Design and Implementation.New York,USA:ACM Press,2017:377-392. [4] RAN X K,CHEN H,ZHU X D,et al.DeepDecision:a mobile deep learning framework for edge video analytics[C]//Proceedings of IEEE Conference on Computer Communications.Washington D.C.,USA:IEEE Press,2018:1421-1429. [5] ZHANG W,HE Z,LIU L,et al.Elf:accelerate high-resolution mobile deep vision with content-aware parallel offloading[C]//Proceedings of the 27th Annual International Conference on Mobile Computing and Networking.New York,USA:ACM Press,2021:201-214. [6] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:779-788. [7] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [8] XU L,JIA J Y,MATSUSHITA Y.Motion detail preserving optical flow estimation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(9):1744-1757. [9] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2022-04-02].https://arxiv.org/abs/1704.04861. [10] LI Y,LI J,LIN W,et al.Tiny-DSOD:lightweight object detection for resource-restricted usages[EB/OL].[2022-04-02].https://arxiv.org/abs/1807.11013. [11] HU C,BAO W,WANG D,et al.Dynamic adaptive DNN surgery for inference acceleration on the edge[C]//Proceedings of IEEE INFOCOM 2019-IEEE Conference on Computer Communications.Washington D.C.,USA:IEEE Press,2019:1423-1431. [12] JEONG H J,LEE H J,SHIN C H,et al.IONN:incremental offloading of neural network computations from mobile devices to edge servers[C]//Proceedings of the ACM Symposium on Cloud Computing.New York,USA:ACM Press,2018:401-411. [13] STAHL R,ZHAO Z R,MUELLER-GRITSCHNEDER D,et al.Fully distributed deep learning inference on resource-constrained edge devices[EB/OL].[2022-04-02].https://link.springer.com/chapter/10.1007/978-3-030-27562-4_6. [14] HE J,QURESHI M A,QIU L L,et al.Rubiks:practical 360-degree streaming for smartphones[C]//Proceedings of the 16th Annual International Conference on Mobile Systems,Applications,and Services.New York,USA:ACM Press,2018:482-494. [15] QIU H,AHMAD F,BAI F,et al.AVR:augmented vehicular reality[C]//Proceedings of the 16th Annual International Conference on Mobile Systems,Applications,and Services.New York,USA:ACM Press,2018:81-95. [16] LI Y,REN F.Light-weight retinanet for object detection[EB/OL].[2022-04-02].https://arxiv.org/abs/1905.10011. [17] WONG A,FAMUORI M,SHAFIEE M J,et al.YOLO nano:a highly compact you only look once convolutional neural network for object detection[EB/OL].[2022-04-02].https://arxiv.org/abs/1910.01271. [18] HE W C,GUO S Y,GUO S,et al.Joint DNN partition deployment and resource allocation for delay-sensitive deep learning inference in IoT[J].IEEE Internet of Things Journal,2020,7(10):9241-9254. [19] JIANG J C,ANANTHANARAYANAN G,BODIK P,et al.Chameleon:scalable adaptation of video analytics[C]//Proceedings of 2018 Conference of the ACM Special Interest Group on Data Communication.New York,USA:ACM Press,2018:253-266. [20] LIU L Y,ZHONG R G,ZHANG W Y,et al.Cutting the cord:designing a high-quality untethered VR system with low latency remote rendering[C]//Proceedings of the 16th Annual International Conference on Mobile Systems,Applications,and Services.New York,USA:ACM Press,2018:68-80. [21] CHENG Y,LI D,GUO Z Y,et al.DLBooster:boosting end-to-end deep learning workflows with offloading data preprocessing pipelines[C]//Proceedings of the 48th International Conference on Parallel Processing.New York,USA:ACM Press,2019:1-11. [22] HUANG L,BI S Z,ZHANG Y J A.Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J].IEEE Transactions on Mobile Computing,2020,19(11):2581-2593. [23] WANG C,ZHANG S,CHEN Y,et al.Joint configuration adaptation and bandwidth allocation for edge-based real-time video analytics[C]//Proceedings of IEEE Conference on Computer Communications.New York,USA:ACM Press,2020:257-266. [24] CHEN N,QUAN S Y,ZHANG S,et al.Cuttlefish:neural configuration adaptation for video analysis in live augmented reality[J].IEEE Transactions on Parallel and Distributed Systems,2021,32(4):830-841. [25] SUN Y,ZHU H S,ZHUANG F Z,et al.Exploring the urban region-of-interest through the analysis of online map search queries[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2018:2269-2278. [26] CHAI Z,LI S,HE Q,et al.FPGA-based ROI encoding for HEVC video bitrate reduction[J].Journal of Circuits,Systems and Computers,2020,29(11):82-93. [27] ILG E,MAYER N,SAIKIA T,et al.Flownet 2.0:evolution of optical flow estimation with deep networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2462-2470. [28] Xiph.org.Derf's test media collection[EB/OL].[2021-12-02].https://media.xiph.org/video/derf/. [29] MOUSAVIAN A,ANGUELOV D,FLYNN J,et al.3D bounding box estimation using deep learning and geometry[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:5632-5640. |