| 1 |
FANG H K , QIAN Q . Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet, 2021, 13 (4): 94.
doi: 10.3390/fi13040094
|
| 2 |
PARK J , LIM H . Privacy-preserving federated learning using homomorphic encryption. Applied Sciences, 2022, 12 (2): 734.
doi: 10.3390/app12020734
|
| 3 |
杨越佳, 华蓓, 钟志威, 等. 基于同态加密的隐私保护逻辑回归协同计算. 计算机工程, 2023, 49 (4): 23- 31.
doi: 10.19678/j.issn.1000-3428.0064391
|
|
YANG Y J , HUA B , ZHONG Z W , et al. Collaborative computing of privacy-preserving logistic regression based on homomorphic encryption. Computer Engineering, 2023, 49 (4): 23- 31.
doi: 10.19678/j.issn.1000-3428.0064391
|
| 4 |
AMEUR Y, BOUZEFRANE S, AUDIGIER V. Application of homomorphic encryption in machine learning[M]//AMEUR Y, BOUZEFRANE S, AUDIGIER V. Emerging trends in cybersecurity applications. Berlin, Germany: Springer, 2022: 391-410.
|
| 5 |
RIVEST R L , SHAMIR A , ADLEMAN L . A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 1978, 21 (2): 120- 126.
doi: 10.1145/359340.359342
|
| 6 |
SHI H Y , JIANG C , DAI W R , et al. Secure Multi-pArty Computation Grid LOgistic REgression (SMAC-GLORE). BMC Medical Informatics and Decision Making, 2016, 16 (3): 89.
|
| 7 |
XIE W, WANG Y, BOKER S M, BROWN D E. Privlogit: efficient privacy-preserving logistic regression by tailoring numerical optimizers[EB/OL]. [2024-02-01]. https://arxiv.org/pdf/1611.01170.
|
| 8 |
FAN Y K , BAI J R , LEI X , et al. Privacy preserving based logistic regression on big data. Journal of Network and Computer Applications, 2020, 171, 102769.
doi: 10.1016/j.jnca.2020.102769
|
| 9 |
KIM A , SONG Y , KIM M , et al. Logistic regression model training based on the approximate homomorphic encryption. BMC Medical Genomics, 2018, 11 (suppl 4): 83.
|
| 10 |
CARPOV S , GAMA N , GEORGIEVA M , et al. Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption. BMC Medical Genomics, 2020, 13 (suppl 7): 88.
|
| 11 |
HAN K , HONG S , CHEON J H , et al. Logistic regression on homomorphic encrypted data at scale. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 9466- 9471.
doi: 10.1609/aaai.v33i01.33019466
|
| 12 |
|
| 13 |
COCK M , DOWSLEY R , NASCIMENTO A C A , et al. High performance logistic regression for privacy-preserving genome analysis. BMC Medical Genomics, 2021, 14 (1): 23.
doi: 10.1186/s12920-020-00869-9
|
| 14 |
KIM M , LEE J , OHNO-MACHADO L , et al. Secure and differentially private logistic regression for horizontally distributed data. IEEE Transactions on Information Forensics and Security, 2020, 15, 695- 710.
doi: 10.1109/TIFS.2019.2925496
|
| 15 |
YU X P , ZHAO W , TANG D H , et al. Privacy-preserving vertical collaborative logistic regression without trusted third-party coordinator. Security and Communication Networks, 2022, 2022, 5094830.
|
| 16 |
HE H R , WANG Z , JAIN H , et al. A privacy-preserving decentralized credit scoring method based on multi-party information. Decision Support Systems, 2023, 166, 113910.
doi: 10.1016/j.dss.2022.113910
|
| 17 |
SUN H Z, WANG Z Y, HUANG Y J, et al. Privacy-preserving vertical federated logistic regression without trusted third-party coordinator[C]//Proceedings of the 6th International Conference on Machine Learning and Soft Computing. New York, USA: ACM Press, 2022: 132-138.
|
| 18 |
HE D J , DU R M , ZHU S S , et al. Secure logistic regression for vertical federated learning. IEEE Internet Computing, 2022, 26 (2): 61- 68.
doi: 10.1109/MIC.2021.3138853
|
| 19 |
MOHASSEL P, ZHANG Y P. SecureML: a system for scalable privacy-preserving machine learning[C]//Proceedings of the IEEE Symposium on Security and Privacy. San Jose, USA: IEEE Press, 2017: 19-38.
|
| 20 |
GHAVAMIPOUR A R , TURKMEN F , JIANG X Q . Privacy-preserving logistic regression with secret sharing. BMC Medical Informatics and Decision Making, 2022, 22 (1): 89.
doi: 10.1186/s12911-022-01811-y
|
| 21 |
ZAIDI N A, WEBB G I. A fast trust-region newton method for softmax logistic regression[C]//Proceedings of the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. [S. l. ]: SIAM, 2017: 705-713.
|
| 22 |
YANG J . Newton-conjugate-gradient methods for solitary wave computations. Journal of Computational Physics, 2009, 228 (18): 7007- 7024.
doi: 10.1016/j.jcp.2009.06.012
|
| 23 |
NAZARETH J L . Conjugate gradient method. WIREs Computational Statistics, 2009, 1 (3): 348- 353.
doi: 10.1002/wics.13
|
| 24 |
吕由, 吴文渊. 2方参与的隐私保护岭回归方案与应用. 密码学报, 2023, 10 (2): 276- 288.
|
|
LÜ Y , WU W Y . Two-party privacy-preserving ridge regression scheme with applications. Journal of Cryptologic Research, 2023, 10 (2): 276- 288.
|
| 25 |
CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[M]//TAKAGI T, PEYRIN T. Advances in cryptology-ASIACRYPT 2017. Berlin, Germany: Springer, 2017: 409-437.
|
| 26 |
BOURA C , GAMA N , GEORGIEVA M , et al. CHIMERA: combining ring-LWE-based fully homomorphic encryption schemes. Journal of Mathematical Cryptology, 2020, 14 (1): 316- 338.
doi: 10.1515/jmc-2019-0026
|
| 27 |
CHEON J H, HAN K, KIM A, et al. A full RNS variant of approximate homomorphic encryption[M]//CID C, JACOBSON M J. Selected areas in cryptography-SAC 2018. Berlin, Germany: Springer, 2019: 347-368.
|
| 28 |
LYUBASHEVSKY V, PEIKERT C, REGEV O. On ideal lattices and learning with errors over rings[M]//GILBERT H. Advances in cryptology-EUROCRYPT 2010. Berlin, Germany: Springer, 2010: 1-23.
|
| 29 |
GENTRY C, HALEVI S, SMART N P. Homomorphic evaluation of the AES circuit[M]//SAFAVI-NAINI R, CANETTI R. Advances in cryptology-CRYPTO 2012. Berlin, Germany: Springer, 2012: 850-867.
|
| 30 |
LINDNER R, PEIKERT C. Better key sizes (and attacks) for LWE-based encryption[C]//Proceedings of CT-RSA 2011. Berlin, Germany: Springer, 2011: 319-339.
|