| 1 |
VELIČKOVIĆ P . Everything is connected: graph neural networks. Current Opinion in Structural Biology, 2023, 79, 102538.
doi: 10.1016/j.sbi.2023.102538
|
| 2 |
YANG X H , HU X C , ZHOU S H , et al. Interpolation-based contrastive learning for few-label semi-supervised learning. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (2): 2054- 2065.
doi: 10.1109/TNNLS.2022.3186512
|
| 3 |
LIU H , WANG T , LI Y D , et al. Joint graph learning and matching for semantic feature correspondence. Pattern Recognition, 2023, 134, 109059.
doi: 10.1016/j.patcog.2022.109059
|
| 4 |
XU J, TANG H Y, REN Y Z, et al. Multi-level feature learning for contrastive multi-view clustering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 16030-16039.
|
| 5 |
LIN R J , LIN Y K , LIN Z H , et al. CCR-Net: consistent contrastive representation network for multi-view clustering. Information Sciences, 2023, 637, 118937.
doi: 10.1016/j.ins.2023.118937
|
| 6 |
刘鹏仪, 胡节, 王红军, 等. 基于对比共识图学习的多视图属性图聚类算法. 计算机科学, 2024, 51 (11): 73- 80.
|
|
LIU P Y , HU J , WANG H J , et al. A multi-view attribute graph clustering algorithm based on comparative consensus graph learning. Computer Science, 2024, 51 (11): 73- 80.
|
| 7 |
|
| 8 |
PAN E , KANG Z . Multi-view contrastive graph clustering. Advances in Neural Information Processing Systems, 2021, 34 (1): 2148- 2159.
|
| 9 |
ZENG J Q , XIE P T . Contrastive self-supervised learning for graph classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (12): 10824- 10832.
doi: 10.1609/aaai.v35i12.17293
|
| 10 |
WAN S , PAN S R , YANG J , et al. Contrastive and generative graph convolutional networks for graph-based semi-supervised learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (11): 10049- 10057.
doi: 10.1609/aaai.v35i11.17206
|
| 11 |
DONG W, WU J S, LUO Y, et al. Node representation learning in graph via node-to-neighbourhood mutual information maximization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 16599-16608.
|
| 12 |
SOUZA F , PREMEBIDA C , ARAÚJO R . High-order conditional mutual information maximization for dealing with high-order dependencies in feature selection. Pattern Recognition, 2022, 131, 108895.
doi: 10.1016/j.patcog.2022.108895
|
| 13 |
|
| 14 |
|
| 15 |
FANG U , LI M , LI J X , et al. A comprehensive survey on multi-view clustering. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (12): 12350- 12368.
doi: 10.1109/TKDE.2023.3270311
|
| 16 |
|
| 17 |
WANG H , YANG Y , LIU B . GMC: graph-based multi-view clustering. IEEE Transactions on Knowledge and Data Engineering, 2020, 32 (6): 1116- 1129.
doi: 10.1109/TKDE.2019.2903810
|
| 18 |
LIU Y , YANG X H , ZHOU S H , et al. Hard sample aware network for contrastive deep graph clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (7): 8914- 8922.
doi: 10.1609/aaai.v37i7.26071
|
| 19 |
ZHOU J , CUI G Q , HU S D , et al. Graph neural networks: a review of methods and applications. AI Open, 2020, 1, 57- 81.
doi: 10.1016/j.aiopen.2021.01.001
|
| 20 |
赵振廷, 赵旭俊. 多样性约束和高阶信息挖掘的多视图聚类. 计算机应用研究, 2024, 41 (8): 2309- 2314.
|
|
ZHAO Z T , ZHAO X J . Multi-view clustering with diversity constraints and higher-order information mining. Computer Applications Research, 2024, 41 (8): 2309- 2314.
|
| 21 |
YANG X H, JIN J Q, WANG S W, et al. DealMVC: dual contrastive calibration for multi-view clustering[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York, USA: ACM Press, 2023: 337-346.
|
| 22 |
朱云华, 孔兵, 周丽华, 等. 图对比学习引导的多视图聚类网络. 计算机应用, 2024, 44 (10): 3267- 3274.
|
|
ZHU Y H , KONG B , ZHOU L H , et al. Figure comparison of learning-guided multi-view clustering networks. Computer Applications, 2024, 44 (10): 3267- 3274.
|
| 23 |
CUI G Q, ZHOU J, YANG C, et al. Adaptive graph encoder for attributed graph embedding[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 976-985.
|
| 24 |
CHUNG F R K . Spectral graph theory. [S.l.]: American Mathematical Soc., 1997.
|
| 25 |
|
| 26 |
LÓPEZ-ORIONA Á , VILAR J A , D'URSO P . Hard and soft clustering of categorical time series based on two novel distances with an application to biological sequences. Information Sciences, 2023, 624, 467- 492.
doi: 10.1016/j.ins.2022.12.065
|
| 27 |
CHEN M S , LIN J Q , LI X L , et al. Representation learning in multi-view clustering: a literature review. Data Science and Engineering, 2022, 7 (3): 225- 241.
doi: 10.1007/s41019-022-00190-8
|
| 28 |
|
| 29 |
|
| 30 |
LIU W Y, CHEN P Y, YEUNG S, et al. Principled multilayer network embedding[C]//Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW). Washington D.C., USA: IEEE Press, 2017: 134-141.
|
| 31 |
XIA R K , PAN Y , DU L , et al. Robust multi-view spectral clustering via low-rank and sparse decomposition. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28 (1): 1- 7.
|
| 32 |
|
| 33 |
YI S Y , JU W , QIN Y F , et al. Redundancy-free self-supervised relational learning for graph clustering. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (12): 18313- 18327.
doi: 10.1109/TNNLS.2023.3314451
|
| 34 |
ZHANG M J , WANG D W , WU H R , et al. Multi-view contrastive learning for multilayer network embedding. Journal of Computational Science, 2023, 67, 101975.
doi: 10.1016/j.jocs.2023.101975
|
| 35 |
|