作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (12): 82-95. doi: 10.19678/j.issn.1000-3428.0069632

• 人工智能与模式识别 • 上一篇    下一篇

基于双重对比学习和硬样本挖掘的多视图图聚类算法

钱李烽1, 李静1,*(), 邹徐熹2, 陈宇3, 顾亚林2, 魏训虎2   

  1. 1. 南京航空航天大学计算机科学与技术学院/人工智能学院, 江苏 南京 211106
    2. 南京南瑞信息通信科技有限公司, 江苏 南京 211106
    3. 国网上海市电力公司信息通信公司, 上海 200072
  • 收稿日期:2024-03-21 修回日期:2024-06-14 出版日期:2025-12-15 发布日期:2025-12-16
  • 通讯作者: 李静
  • 基金资助:
    国家电网有限公司总部科技项目(5108-202218280A-2-152-XG)

Multi-view Graph Clustering Algorithm Based on Dual Contrastive Learning and Hard Sample Mining

QIAN Lifeng1, LI Jing1,*(), ZOU Xuxi2, CHEN Yu3, GU Yalin2, WEI Xunhu2   

  1. 1. College of Computer Science and Technology/College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China
    2. Nanjing NARI Information and Communication Technology Co., Ltd., Nanjing 211106, Jiangsu, China
    3. State Grid Shanghai Municipal Electric Power Company, Shanghai 200072, China
  • Received:2024-03-21 Revised:2024-06-14 Online:2025-12-15 Published:2025-12-16
  • Contact: LI Jing

摘要:

图聚类作为图挖掘领域的关键研究方向,旨在从图数据中发现具有相似性的子结构或节点群体,将它们划分到同一簇。多视图图聚类算法通过综合图数据的多个视图,充分利用底层信息以提升聚类质量。近年来,图对比学习的改进推动了基于深度图学习的多视图图聚类的迅速发展。然而,现有的图对比学习难以提高节点表示的识别性。针对上述问题,提出一种基于双重对比学习和硬样本挖掘的多视图图聚类方法。首先,通过图滤波器平滑节点表示以减轻噪声节点带来的影响;然后,设计节点紧凑性对比学习和节点一致性对比学习,以提高同一聚类内节点表示的紧凑性和不同视图间节点表示的一致性;最后,考虑到基于图对比学习的多视图图聚类存在假阴性问题,提出基于聚类引导的硬样本挖掘策略,以提高多视图图聚类效果。在ACM、DBLP和IMDB 3个真实世界数据集上进行实验,结果表明,该方法分别取得了94.49%、93.22%和57.51%的准确率,均高于8种对比基线方法。

关键词: 图挖掘, 多视图, 图聚类, 深度图学习, 图对比学习

Abstract:

As a key research direction in the field of graph mining, graph clustering aims to discover substructures or node groups with similarities from graph data and classify them into the same cluster. The multi-view graph clustering algorithm integrates multiple views of graph data and fully utilizes the underlying information to improve the clustering quality. In recent years, improvements in graph contrastive learning have driven the rapid development of multi-view graph clustering based on deep graph learning. However, improving the recognition of node representations using existing graph contrastive learning methods is challenging. A multi-view graph clustering method based on dual contrastive learning and hard sample mining is proposed to address these issues. First, the node representation is smoothed using graph filters to mitigate the impact of noisy nodes. Subsequently, node compactness comparison learning and node consistency comparison learning are designed to improve the compactness of node representations within the same cluster and the consistency of node representations between different views. Finally, considering the issue of false negatives in multi-view graph clustering based on graph contrastive learning, a hard sample mining strategy guided by clustering is proposed to improve the clustering performance of multi-view graphs. Experiments conducted on three real-world datasets, ACM, DBLP, and IMDB, reveal that the proposed method achieves accuracies of 94.49%, 93.22%, and 57.51%, respectively. These values are higher than those of the eight baseline comparison methods.

Key words: graph mining, multi-view, graph clustering, deep graph learning, graph contrastive learning