| 1 |
张东阳, 陆子轩, 刘军民, 等. 深度模型的持续学习综述: 理论、方法和应用. 电子与信息学报, 2024, 46 (10): 3849- 3878.
|
|
ZHANG D Y , LU Z X , LIU J M , et al. A survey on continual learning of deep models: theories, methods, and applications. Journal of Electronics & Information Technology, 2024, 46 (10): 3849- 3878.
|
| 2 |
CHEN Z Y , LIU B . Lifelong machine learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2016, 10 (3): 1- 145.
doi: 10.1007/978-3-031-01581-6
|
| 3 |
KUDITHIPUDI D , AGUILAR-SIMON M , BABB J , et al. Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, 2022, 4 (3): 196- 210.
doi: 10.1038/s42256-022-00452-0
|
| 4 |
韩亚楠, 刘建伟, 罗雄麟. 连续学习研究进展. 计算机研究与发展, 2022, 59 (6): 1213- 1239.
|
|
HAN Y N , LIU J W , LUO X L . Research progress of continual learning. Journal of Computer Research and Development, 2022, 59 (6): 1213- 1239.
|
| 5 |
HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network. Computer Science, 2015, 14 (7): 38- 39.
|
| 6 |
LI Z Z , HOIEM D . Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (12): 2935- 2947.
doi: 10.1109/TPAMI.2017.2773081
|
| 7 |
CASTRO F M, MARÍN-JIMÉNEZ M J, GUIL N, et al. End-to-end incremental learning[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 233-248.
|
| 8 |
REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: incremental classifier and representation learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE Press, 2017: 5533-5542.
|
| 9 |
MASANA M , LIU X L , TWARDOWSKI B , et al. Class-incremental learning: survey and performance evaluation on image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (5): 5513- 5533.
doi: 10.1109/TPAMI.2022.3213473
|
| 10 |
LEE K, LEE K, SHIN J, et al. Overcoming catastrophic forgetting with unlabeled data in the wild[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE Press, 2019: 312-321.
|
| 11 |
ZHANG J T, ZHANG J, GHOSH S, et al. Class-incremental learning via deep model consolidation[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Snowmass Village, USA: IEEE Press, 2020: 1120-1129.
|
| 12 |
HOU S H, PAN X Y, LOY C C, et al. Learning a unified classifier incrementally via rebalancing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE Press, 2019: 831-839.
|
| 13 |
KANG M, PARK J, HAN B. Class-incremental learning by knowledge distillation with adaptive feature consolidation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE Press, 2022: 16050-16059.
|
| 14 |
LIU Y , HONG X P , TAO X Y , et al. Model behavior preserving for class-incremental learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (10): 7529- 7540.
doi: 10.1109/TNNLS.2022.3144183
|
| 15 |
PENG C, ZHAO K, WANG T R, et al. Few-shot class-incremental learning from an open-set perspective[C]//Proceedings of the 17th European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2022: 382-397.
|
| 16 |
|
| 17 |
ZHAO L L, LU J, XU Y L, et al. Few-shot class-incremental learning via class-aware bilateral distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE Press, 2023: 11838-11847.
|
| 18 |
LIN J H , WU Z H , LIN W F , et al. M2SD: multiple mixing self-distillation for few-shot class-incremental learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (4): 3422- 3431.
doi: 10.1609/aaai.v38i4.28129
|
| 19 |
KIRKPATRICK J , PASCANU R , RABINOWITZ N , et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (13): 3521- 3526.
|
| 20 |
WU Y C, HUANG L K, WANG R Z, et al. Meta continual learning revisited: implicitly enhancing online hessian approximation via variance reduction[C]//Proceedings of International Conference on Learning Representations. Vienna, Austria: [s. n.], 2024: 1-30.
|
| 21 |
LIN H W, ZHANG B Q, FENG S S, et al. PCR: proxy-based contrastive replay for online class-incremental continual learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE Press, 2023: 24246-24255.
|
| 22 |
OSTAPENKO O, PUSCAS M, KLEIN T, et al. Learning to remember: a synaptic plasticity driven framework for continual learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE Press, 2019: 11313-11321.
|
| 23 |
WANG L Y, YANG K, LI C X, et al. ORDisCo: effective and efficient usage of incremental unlabeled data for semi-supervised continual learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE Press, 2021: 5379-5388.
|
| 24 |
ZHU F, ZHANG X Y, WANG C, et al. Prototype augmentation and self-supervision for incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE Press, 2021: 5867-5876.
|
| 25 |
朱飞, 张煦尧, 刘成林. 类别增量学习研究进展和性能评价. 自动化学报, 2023, 49 (3): 1- 26.
|
|
ZHU F , ZHANG X Y , LIU C L . Class incremental learning: a review and performance evaluation. Acta Automatica Sinica, 2023, 49 (3): 1- 26.
|
| 26 |
LI X L, ZHOU Y B, WU T F, et al. Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting[C]//Proceedings of the International Conference on Machine Learning. New York, USA: ACM Press, 2019: 3925-3934.
|
| 27 |
YAN S P, XIE J W, HE X M. DER: dynamically expandable representation for class incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE Press, 2021: 3013-3022.
|
| 28 |
|
| 29 |
ZHAO H B , FU Y J , KANG M T , et al. MgSvF: multi-grained slow versus fast framework for few-shot class-incremental learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (3): 1576- 1588.
doi: 10.1109/TPAMI.2021.3133897
|
| 30 |
DOUILLARD A, RAME A, COUAIRON G, et al. DyTox: transformers for continual learning with DYnamic TOken eXpansion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE Press, 2022: 9275-9285.
|
| 31 |
WANG Z F, ZHANG Z Z, LEE C Y, et al. Learning to prompt for continual learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE Press, 2022: 139-149.
|
| 32 |
MITTAL S, GALESSO S, BROX T. Essentials for class incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville, USA: IEEE Press, 2021: 3508-3517.
|
| 33 |
CUBUK E D, ZOPH B, MANE D, et al. AutoAugment: learning augmentation strategies from data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE Press, 2019: 113-123.
|
| 34 |
FURLANELLO T, LIPTON Z, TSCHANNEN M, et al. Born again neural networks[C]//Proceedings of the International Conference on Machine Learning. New York, USA: ACM Press, 2018: 1607-1616.
|
| 35 |
SHI Y J, ZHOU K Q, LIANG J, et al. Mimicking the oracle: an initial phase decorrelation approach for class incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE Press, 2022: 16701-16710.
|
| 36 |
GUO C, PLEISS G, SUN Y, et al. On calibration of modern neural networks[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2017: 1321-1330.
|
| 37 |
KRISHNAN R , TICKOO O . Improving model calibration with accuracy versus uncertainty optimization. Neural Information Processing Systems, 2020, 33, 18237- 18248.
|
| 38 |
KRIZHEVSKY A. Learning multiple layers of features from tiny images[M]//ASHERSON R A. Handbook of systemic autoimmune diseases. [S. l.]: Elsevier, 2009: 1-10.
|
| 39 |
|
| 40 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE Press, 2016: 770-778.
|
| 41 |
|