| 1 |
WANG X C , GUO P , HUANG X B . A review of wind power forecasting models. Energy Procedia, 2011, 12, 770- 778.
|
| 2 |
SEO I Y , HA B N , KIM S O , et al. Short term wind power prediction using wavelet transform and ARIMA. Journal of Energy and Power Engineering, 2012, 6 (11): 1786- 1790.
|
| 3 |
XIONG B R , LOU L , MENG X Y , et al. Short-term wind power forecasting based on attention mechanism and deep learning. Electric Power Systems Research, 2022, 206, 107776.
doi: 10.1016/j.epsr.2022.107776
|
| 4 |
NIELSEN H A , NIELSEN T S , MADSEN H , et al. Optimal combination of wind power forecasts. Wind Energy, 2007, 10 (5): 471- 82.
|
| 5 |
李莉, 刘永前, 杨勇平, 等. 基于CFD流场预计算的短期风速预测方法. 中国电机工程学报, 2013, 33 (7): 27-32, 22.
|
|
LI L , LIU Y Q , YANG Y P , et al. Short-term wind speed forecasting based on CFD pre-calculated flow fields. Proceedings of the CSEE, 2013, 33 (7): 27-32, 22.
|
| 6 |
李鹏, 朱洪泽, 骆光杰, 等. 基于ARMA模型的海上风机随机风场模拟. 武汉大学学报(工学版), 2024, 57 (1): 112- 20.
|
|
LI P , ZHU H Z , LUO G J , et al. Simulation of stochastic wind field of offshore wind turbines based on ARMA model. Engineering Journal of Wuhan Universit, 2024, 57 (1): 112- 20.
|
| 7 |
陈蕻峰, 王贺, 李岩, 等. 组合两步分解和ARIMA-LSTM的短期风速预测研究. 太阳能学报, 2024, 45 (2): 164- 171.
|
|
CHEN H F , WANG H , LI Y , et al. Short-term wind speed prediction by combining two-step decomposition and arima-lstm. Acta Energiae Solaris Sinica, 2024, 45 (2): 164- 171.
|
| 8 |
景惠甜, 韩丽, 高志宇. 基于卷积神经网络特征提取的风电功率爬坡预测. 电力系统自动化, 2021, 45 (4): 98- 105.
|
|
JING H T , HAN L , GAO Z Y . Wind power ramp forecast based on feature extraction using convolutional neural network. Automation of Electric Power Systems, 2021, 45 (4): 98- 105.
|
| 9 |
周勇良, 余光正, 刘建锋, 等. 基于改进长期循环卷积神经网络的海上风电功率预测. 电力系统自动化, 2021, 45 (3): 183- 91.
|
|
ZHOU Y L , YU G Z , LIU J F , et al. Offshore wind power prediction based on improved long-term recurrent convolutional neural network. Automation of Electric Power Systems, 2021, 45 (3): 183- 91.
|
| 10 |
WANG H Q, PENG J, HUANG F H, et al. MICN: multi-scale local and global context modeling for long-term series forecasting[C]//Proceedings of the 11th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2008: 2231-2242.
|
| 11 |
KOOCHALI A , SCHICHTEL P , DENGEL A , et al. Probabilistic forecasting of sensory data with generative adversarial networks-ForGAN. IEEE Access, 2019, 7, 63868- 63880.
doi: 10.1109/ACCESS.2019.2915544
|
| 12 |
LI Y Q , HUANG W M , LV X R , et al. An adversarial learning approach to forecasted wind field correction with an application to oil spill drift prediction. International Journal of Applied Earth Observation and Geoinformation, 2022, 112, 102924.
doi: 10.1016/j.jag.2022.102924
|
| 13 |
骆钊, 吴谕侯, 朱家祥, 等. 基于多尺度时间序列块自编码Transformer神经网络模型的风电超短期功率预测. 电网技术, 2023, 47 (9): 3527- 3537.
|
|
LUO Z , WU Y H , ZHU J X , et al. Wind power forecasting based on multi-scale time series block auto-encoder Transformer neural network model. Power System Technology, 2023, 47 (9): 3527- 3537.
|
| 14 |
ZHOU H Y , ZHANG S H , PENG J Q , et al. Informer: beyond efficient transformer for long sequence time-series forecasting. Artificial Intelligence, 2021, 35 (12): 11106- 11115.
|
| 15 |
RILLING G, FLANDRIN P, GONCALVES P. On empirical mode decomposition and its algorithms[C]//Proceedings of the IEEE Workshop on Nonlinear Signal and Image Processing. Washington D. C., USA: IEEE Press, 2003: 434-442.
|
| 16 |
|
| 17 |
杨迪, 王辉, 贺仁杰, 等. 基于改进经验模态分解和混合深度学习模型的风速预测. 智慧电力, 2024, 52 (1): 1- 7.
|
|
YANG D , WANG H , HE R J , et al. Wind speed prediction based on improved empirical mode decomposition and hybrid deep learning models. Smart Power, 2024, 52 (1): 1- 7.
|
| 18 |
王绍敏, 王守相, 赵倩宇, 等. 基于频域分解和精度加权集成的分布式风电功率预测方法. 电力建设, 2023, 44 (5): 84- 93.
|
|
WANG S M , WANG S X , ZHAO Q Y , et al. Distributed wind power forecasting method based on frequency domain decomposition and precision-weighted ensemble. Electric Power Construction, 2023, 44 (5): 84- 93.
|
| 19 |
王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测. 太阳能学报, 2023, 44 (3): 204- 211.
|
|
WANG W G , WEI Y B , TENG X D . Short-term wind power forecasting based on VMD-SSA-LSSVM. Acta Energiae Solaris Sinica, 2023, 44 (3): 204- 211.
|
| 20 |
张思毅, 刘明波, 雷振兴, 等. 基于集合经验模态分解和编码器-解码器的风电功率多步预测. 南方电网技术, 2023, 17 (4): 16- 24.
|
|
ZHANG S Y , LIU M B , LEI Z X , et al. Multi-step prediction of wind power based on ensemble empirical mode decomposition and encoder-decoder. Southern Power System Technology, 2023, 17 (4): 16- 24.
|
| 21 |
王瑞, 陈泽坤, 逯静. 基于VMD和IBA-LSSVM的短期风电功率预测. 河海大学学报(自然科学版), 2021, 49 (6): 575- 582.
|
|
WANG R , CHEN Z K , LU J . Short term prediction of wind power based on VMD and IBA-LSSVM. Journal of Hohai University (Natural Sciences), 2021, 49 (6): 575- 582.
|
| 22 |
鹿凯, 石开明, 贾欢, 等. 基于自适应变分模态分解的组合模型风电功率预测. 电源学报, 2024, 22 (2): 283- 289.
|
|
LU K , SHI K M , JIA H , et al. Wind power prediction of combined model based on variational mode decomposition. Journal of Power Supply, 2024, 22 (2): 283- 289.
|
| 23 |
王晓东, 苗宜之, 刘颖明, 等. 基于多分解策略和误差校正的超短期风电功率混合智能预测算法. 太阳能学报, 2021, 42 (6): 312- 20.
|
|
WANG X D , MIAO Y Z , LIU Y M , et al. HYBRID hybrid intelligent prediction algorithm of ultra-short-term wind power based on multi-decomposition strategy and error correction. Acta Energiae Solaris Sinica, 2021, 42 (6): 312- 20.
|
| 24 |
刘长良, 赵陆阳, 王梓齐, 等. 基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法. 太阳能学报, 2023, 44 (8): 420- 429.
|
|
LIU C L , ZHAO L Y , WANG Z Q , et al. Multi-step wind speed prediction algorithm of multiple wind turbines based on spatial-temporal attention-Seq2Seq model. Acta Energiae Solaris Sinica, 2023, 44 (8): 420- 429.
|
| 25 |
胡宇晗, 朱利鹏, 李佳勇, 等. 融合深度误差反馈学习和注意力机制的短期风电功率预测. 电力系统保护与控制, 2024, 52 (4): 100- 108.
|
|
HU Y H , ZHU L P , LI J Y , et al. Short-term wind power forecasting with the integration of a deep error feedback learning and attention mechanism. Power System Protection and Control, 2024, 52 (4): 100- 108.
|
| 26 |
张浩田, 温蜜, 李晋国, 等. 数据驱动的时间注意力卷积风电功率预测模型. 太阳能学报, 2022, 43 (10): 167- 176.
|
|
ZHANG H T , WEN M , LI J G , et al. Data driven time attention convolution wind power prediction model. Acta Energiae Solaris Sinica, 2022, 43 (10): 167- 176.
|
| 27 |
王渝红, 史云翔, 周旭, 等. 基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测. 高电压技术, 2022, 48 (5): 1884- 1892.
|
|
WANG Y H , SHI Y X , ZHOU X , et al. Ultra-short-term power prediction for BiLSTM multi wind turbines based on temporal pattern attention. High Voltage Engineering, 2022, 48 (5): 1884- 1892.
|
| 28 |
苏向敬, 周汶鑫, 李超杰, 等. 基于双重注意力LSTM神经网络的可解释海上风电出力预测. 电力系统自动化, 2022, 46 (7): 141- 151.
|
|
SU X J , ZHOU W X , LI C J , et al. Interpretable offshore wind power output forecasting based on long short-term memory neural network with dual-stage attention. Automation of Electric Power Systems, 2022, 46 (7): 141- 151.
|
| 29 |
汪欣, 蔡旭, 李征. 结合交叉局部异常因子和注意力机制的超短期风电功率预测方法. 电力系统保护与控制, 2020, 48 (23): 92- 99.
|
|
WANG X , CAI X , LI Z . Ultra-short-term wind power forecasting method based on a cross LOF preprocessing algorithm and an attention mechanism. Power System Protection and Control, 2020, 48 (23): 92- 99.
|
| 30 |
ZHOU T, MA Z, WEN Q, et al. Fedformer: frequency enhanced decomposed transformer for long-term series forecasting[EB/OL]. [2024-05-04]. https://arxiv.org/abs/2201.12740.
|
| 31 |
|