| 1 |
俞玉瑾, 韩军, 赵庆喜, 等. 基于IHDR的自主学习巡检技术研究. 计算机工程, 2019, 45 (4): 311-315, 320.
doi: 10.19678/j.issn.1000-3428.0050023
|
|
YU Y J , HAN J , ZHAO Q X , et al. Research on autonomous learning inspection technology based on IHDR. Computer Engineering, 2019, 45 (4): 311-315, 320.
doi: 10.19678/j.issn.1000-3428.0050023
|
| 2 |
DONG C Z , CATBAS F N . A review of computer vision-based structural health monitoring at local and global levels. Structural Health Monitoring, 2021, 20 (2): 692- 743.
doi: 10.1177/1475921720935585
|
| 3 |
CABREIRA T , BRISOLARA L , FERREIRA P R J . Survey on coverage path planning with unmanned aerial vehicles. Drones, 2019, 3 (1): 4.
doi: 10.3390/drones3010004
|
| 4 |
孙保燕, 莫春华, 薛伟, 等. 红外成像和倾斜摄影三维融合在建筑检测中的应用. 红外技术, 2022, 44 (9): 991- 998.
|
|
SUN B Y , MO C H , XUE W , et al. Application of 3D fusion of infrared imaging and tilt photography in building detection. Infrared Technology, 2022, 44 (9): 991- 998.
|
| 5 |
刘春, 艾克然木·艾克拜尔, 蔡天池. 面向建筑健康监测的无人机自主巡检与裂缝识别. 同济大学学报(自然科学版), 2022, 50 (7): 921- 932.
|
|
LIU C , AIKERAMMU A , CAI T C . UAV autonomous inspection and crack detection towards building health monitoring. Journal of Tongji University(Natural Science), 2022, 50 (7): 921- 932.
|
| 6 |
祝冰艳, 陈志华, 盛斌. 基于感知增强Swin Transformer的遥感图像检测. 计算机工程, 2024, 50 (1): 216- 223.
doi: 10.19678/j.issn.1000-3428.0066941
|
|
ZHU B Y , CHEN Z H , SHENG B . Remote sensing image detection based on perceptually enhanced Swin Transformer. Computer Engineering, 2024, 50 (1): 216- 223.
doi: 10.19678/j.issn.1000-3428.0066941
|
| 7 |
GAO Y , ZHANG Y W . Path optimization of welding robot based on ant colony and genetic algorithm. Journal of Applied Mathematics, 2022, 2022, 3608899.
|
| 8 |
ZENG X , ZHU G Y , GAO Z H , et al. Surface polishing by industrial robots: a review. The International Journal of Advanced Manufacturing Technology, 2023, 125 (9): 3981- 4012.
|
| 9 |
SUN Y W , JIA J J , XU J T , et al. Path, feedrate and trajectory planning for free-form surface machining: a state-of-the-art review. Chinese Journal of Aeronautics, 2022, 35 (8): 12- 29.
doi: 10.1016/j.cja.2021.06.011
|
| 10 |
SHANG Z X , BRADLEY J , SHEN Z G . A co-optimal coverage path planning method for aerial scanning of complex structures. Expert Systems with Applications, 2020, 158, 113535.
doi: 10.1016/j.eswa.2020.113535
|
| 11 |
BIRCHER A , KAMEL M , ALEXIS K , et al. Receding horizon path planning for 3D exploration and surface inspection. Autonomous Robots, 2018, 42 (2): 291- 306.
doi: 10.1007/s10514-016-9610-0
|
| 12 |
TAN C S , MOHD-MOKHTAR R , ARSHAD M R . A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms. IEEE Access, 2021, 9, 119310- 119342.
doi: 10.1109/ACCESS.2021.3108177
|
| 13 |
GLORIEUX E , FRANCIOSA P , CEGLAREK D . Coverage path planning with targetted viewpoint sampling for robotic free-form surface inspection. Robotics and Computer-Integrated Manufacturing, 2020, 61, 101843.
doi: 10.1016/j.rcim.2019.101843
|
| 14 |
CAO C, ZHANG J, TRAVERS M, et al. Hierarchical coverage path planning in complex 3D environments[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2020: 3206-3212.
|
| 15 |
戴佳佳, 龚小溪, 汪俊. 面向飞机外表面检测任务的无人机覆盖路径规划方法. 机械工程学报, 2023, 59 (16): 243- 253.
|
|
DAI J J , GONG X X , WANG J . Coverage path planning method of unmanned aerial vehicle for aircraft surface detection task. Journal of Mechanical Engineering, 2023, 59 (16): 243- 253.
|
| 16 |
刘洪鹏, 赵文政, 刘银华, 等. 测量不确定度约束下的结构光检测视点规划方法. 计算机集成制造系统, 2022, 28 (4): 1079- 1086.
|
|
LIU H P , ZHAO W Z , LIU Y H , et al. View planning of structured light for free-form surfaces with control of measurement uncertainty. Computer Integrated Manufacturing Systems, 2022, 28 (4): 1079- 1086.
|
| 17 |
陈丽, 陈洋, 杨艳华. 面向三维结构视觉检测的无人机覆盖路径规划. 电子测量与仪器学报, 2023, 37 (2): 1- 10.
|
|
CHEN L , CHEN Y , YANG Y H . UAV coverage path planning for 3D structure visual inspection. Journal of Electronic Measurement and Instrumentation, 2023, 37 (2): 1- 10.
|
| 18 |
HAMZAH R A , KADMIN A F , GHANI S F A , et al. Disparity refinement process based on RANSAC plane fitting for machine vision applications. Journal of Fundamental and Applied Sciences, 2018, 9 (4S): 226.
doi: 10.4314/jfas.v9i4S.13
|
| 19 |
LYU Y C, HUANG X M, ZHANG Z M. Learning to segment 3D point clouds in 2D image space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12255-12264.
|
| 20 |
LI E C , QI K K . Ant colony algorithm for path planning based on grid feature point extraction. Journal of Shanghai Jiaotong University (Science), 2023, 28 (1): 86- 99.
doi: 10.1007/s12204-023-2572-4
|
| 21 |
XIE J F , GARCIA CARRILLO L R , JIN L . Path planning for UAV to cover multiple separated convex polygonal regions. IEEE Access, 2020, 8, 51770- 51785.
doi: 10.1109/ACCESS.2020.2980203
|
| 22 |
CABREIRA T M , DI FRANCO C , FERREIRA P R , et al. Energy-aware spiral coverage path planning for UAV photogrammetric applications. IEEE Robotics and Automation Letters, 2021, 3 (4): 3662- 3668.
|
| 23 |
DUBERG D , JENSFELT P . UFOMap: an efficient probabilistic 3D mapping framework that embraces the unknown. IEEE Robotics and Automation Letters, 2020, 5 (4): 6411- 6418.
doi: 10.1109/LRA.2020.3013861
|
| 24 |
李海旺, 周恒可, 赵兴, 等. 机载LiDAR点云数据的建筑屋顶面提取算法. 计算机工程与应用, 2024, 60 (11): 233- 241.
|
|
LI H W , ZHOU H K , ZHAO X , et al. Algorithm for extracting building roof surfaces from airborne LiDAR point cloud data. Computer Engineering and Applications, 2024, 60 (11): 233- 241.
|
| 25 |
姬翔. 多特征融合的旋翼无人机能耗优化路径规划方法研究[D]. 西安: 西北大学, 2021.
|
|
JI X. Research on energy consumption optimization path planning method of rotary-wing UAV based on multi-feature fusion[D]. Xi'an: Northwest University, 2021. (in Chinese)
|