| 1 |
FISHER R , O'LEARY R A , LOW-CHOY S , et al. Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 2015, 25 (4): 500- 505.
doi: 10.1016/j.cub.2014.12.022
|
| 2 |
VOOLSTRA C R , PEIXOTO R S , FERRIER-PAGÈS C . Mitigating the ecological collapse of coral reef ecosystems. EMBO Reports, 2023, 24 (4): e56826.
doi: 10.15252/embr.202356826
|
| 3 |
EDDY T D , LAM V W Y , REYGONDEAU G , et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth, 2021, 4 (9): 1278- 1285.
doi: 10.1016/j.oneear.2021.08.016
|
| 4 |
NGUYEN N B A , CHEN L Y , EL-SHAZLY M , et al. Towards sustainable medicinal resources through marine soft coral aquaculture: insights into the chemical diversity and the biological potential. Marine Drugs, 2022, 20 (10): 640.
doi: 10.3390/md20100640
|
| 5 |
ALMUTIRY O , IQBAL K , HUSSAIN S , et al. Underwater images contrast enhancement and its challenges: a survey. Multimedia Tools and Applications, 2024, 83 (5): 15125- 15150.
|
| 6 |
WANG M J , ZHANG K K , WEI H A , et al. Underwater image quality optimization: researches, challenges, and future trends. Image and Vision Computing, 2024, 146, 104995.
doi: 10.1016/j.imavis.2024.104995
|
| 7 |
ZHONG J , LI M , QIN J , et al. Real-time marine animal detection using yolo-based deep learning networks in the coral reef ecosystem. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, 46, 301- 306.
|
| 8 |
LU Z X , ZHU X L , GUO H T , et al. FishFocusNet: an improved method based on YOLOv8 for underwater tropical fish identification. IET Image Processing, 2024, 18 (12): 3634- 3649.
doi: 10.1049/ipr2.13202
|
| 9 |
BEIJBOM O, EDMUNDS P J, KLINE D I, et al. Automated annotation of coral reef survey images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE Press, 2012: 1170-1177.
|
| 10 |
CHEN Q M, BEIJBOM O, CHAN S, et al. A new deep learning engine for CoralNet[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2021: 3693-3702.
|
| 11 |
KOHLER K E , GILL S M . Coral point count with excel extensions: a visual basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences, 2006, 32 (9): 1259- 1269.
|
| 12 |
ALONSO I , YUVAL M , EYAL G , et al. CoralSeg: learning coral segmentation from sparse annotations. Journal of Field Robotics, 2019, 36 (8): 1456- 1477.
doi: 10.1002/rob.21915
|
| 13 |
ZHANG H Q, LI M, ZHONG J G, et al. CNet: a novel seabed coral reef image segmentation approach based on deep learning[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. Waikoloa, USA: IEEE Press, 2024: 767-775.
|
| 14 |
ZHENG Z Q, LIANG H X, HUA B S, et al. CoralSCOP: segment any COral image on this planet[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2024: 28170-28180.
|
| 15 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 7263-7271.
|
| 16 |
|
| 17 |
|
| 18 |
|
| 19 |
LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2025-02-01]. https://arxiv.org/abs/2209.02976.
|
| 20 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
| 21 |
WANG C Y, YEH I H, LIAO H Y M. YOLOV9: learning what you want to learn using programmable gradient information[EB/OL]. [2025-02-01]. https://arxiv.org/abs/2402.13616.
|
| 22 |
|
| 23 |
|
|
|
| 24 |
|
|
|
| 25 |
施克权, 李祺, 隋皓, 等. IEMAyoloViT: 基于改进YOLOv8的水下目标检测算法. 电讯技术, 2025, 65 (1): 54- 62.
|
|
SHI K Q , LI Q , SUI H , et al. IEMAyoloViT: an underwater target detection algorithm based on improved YOLOv8. Telecommunication Technology, 2025, 65 (1): 54- 62.
|
| 26 |
HU X L , LIU Y , ZHAO Z X , et al. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLOv4 network. Computers and Electronics in Agriculture, 2021, 185, 106135.
doi: 10.1016/j.compag.2021.106135
|
| 27 |
CHEN J , ER M J . Dynamic YOLO for small underwater object detection. Artificial Intelligence Review, 2024, 57 (7): 165.
doi: 10.1007/s10462-024-10788-1
|
| 28 |
闵锋, 张雨薇, 刘煜晖, 等. 改进YOLOv8的轻量化水下生物检测模型[J]. 计算机工程与应用, 2025, 61(6): 96-105.
|
|
MIN F, ZHANG Y W, LIU Y H, et al. Improved lightweight underwater biological detection model of YOLOv8[J/OL]. Computer Engineering and Applications, 2025, 61(6): 96-105. (in Chinese)
|
| 29 |
WAN D H , LU R S , HU B T , et al. YOLO-MIF: improved YOLOv8 with multi-information fusion for object detection in gray-scale images. Advanced Engineering Informatics, 2024, 62, 102709.
doi: 10.1016/j.aei.2024.102709
|
| 30 |
LI H L , LI J , WEI H B , et al. Slim-neck by GSConv: a lightweight-design for real-time detector architectures. Journal of Real-Time Image Processing, 2024, 21 (3): 62.
doi: 10.1007/s11554-024-01436-6
|
| 31 |
GE Z, LIU S T, LI Z M, et al. OTA: optimal transport assignment for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE Press, 2021: 303-312.
|
| 32 |
|
| 33 |
FENG C J, ZHONG Y J, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 3490-3499.
|
| 34 |
LI X , LV C Q , WANG W H , et al. Generalized focal loss: towards efficient representation learning for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 35 (3): 1- 14.
|
| 35 |
DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE Press, 2021: 10886-10895.
|
| 36 |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2023: 4015-4026.
|
| 37 |
WANG Z Y, CHEN L, XU H Y, et al. Mamba YOLO: a simple baseline for object detection with state space model[EB/OL]. [2025-02-01]. https://arxiv.org/abs/2406.05835.
|
| 38 |
ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2024: 16965-16974.
|
| 39 |
|