[1] FENG Y F, GAO Y, ZHAO X B, et al. SHREC'22 track:open-set 3D object retrieval[J]. Computers and Graphics, 2022, 107(C):231-240. [2] 关日鹏, 况立群, 焦世超, 等. 多模态特征融合与词嵌入驱动的三维检索方法[J]. 计算机工程, 2023, 49(4):101-107, 113. GUAN R P, KUANG L Q, JIAO S C, et al. Retrieval method of 3D models driven by multi-modal feature fusion and word embedding[J]. Computer Engineering, 2023, 49(4):101-107, 113.(in Chinese) [3] CHEN Y B, XIAN Y Q, KOEPKE A S, et al. Distilling audio-visual knowledge by compositional contrastive learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2021:7016-7025. [4] YU Q, SONG J F, SONG Y Z, et al. Fine-grained instance-level sketch-based image retrieval[J]. International Journal of Computer Vision, 2021,129(2):484-500. [5] 白静, 拖继文, 白少进, 等. 基于自适应多类中心和半异构网络的三维模型草图检索[J]. 图学学报, 2022, 43(1):36-43. BAI J, TUO J W, BAI S J, et al. Adaptive multi-class centers and semi-heterogeneous network for sketch-based 3D model retrieval[J]. Journal of Graphics, 2022, 43(1):36-43.(in Chinese) [6] YANG H R, TIAN Y, YANG C F, et al. Sequential learning for sketch-based 3D model retrieval[J]. Multimedia Systems, 2022, 28(3):761-778. [7] HU N, ZHOU H Y, LIU A A, et al. Collaborative distribution alignment for 2D image-based 3D shape retrieval[J]. Journal of Visual Communication and Image Representation, 2022, 83:103426. [8] 田加林, 徐行, 沈复民, 等. 基于跨模态自蒸馏的零样本草图检索[J]. 软件学报, 2022, 33(9):3152-3164. TIAN J L, XU X, SHEN F M, et al. Cross-modal self-distillation for zero-shot sketch-based image retrieval[J]. Journal of Software, 2022, 33(9):3152-3164.(in Chinese) [9] 姬子恒, 王斌. 基于深度学习的草图检索方法研究进展[J]. 计算机工程与科学, 2021, 43(12):2190-2205. JI Z H, WANG B. Research progress on deep learning based sketch retrieval[J]. Computer Engineering & Science, 2021, 43(12):2190-2205.(in Chinese) [10] SHEN Y M, LIU L, SHEN F M, et al. Zero-shot sketch-image hashing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018:3598-3607. [11] LI J T, LING Z X, NIU L, et al. Zero-shot sketch-based image retrieval with structure-aware asymmetric disentanglement[J]. Computer Vision and Image Understanding, 2022, 218:103412. [12] LEI J J, SONG Y X, PENG B, et al. Semi-heterogeneous three-way joint embedding network for sketch-based image retrieval[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(9):3226-3237. [13] NIE W Z, ZHAO Y, NIE J, et al. CLN:cross-domain learning network for 2D image-based 3D shape retrieval[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3):992-1005. [14] 白静, 周文惠, 拖继文, 等. 时空信息联合嵌入的端到端三维模型草图检索[J]. 计算机辅助设计与图形学学报, 2021, 33(6):826-836. BAI J, ZHOU W H, TUO J W, et al. End-to-end sketch-3D model retrieval with spatiotemporal information joint embedding[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(6):826-836.(in Chinese) [15] DAI W D, LIANG S. Cross-modal guidance network for sketch-based 3D shape retrieval[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Washington D.C.,USA:IEEE Press,2020:1-6. [16] BAI C, CHEN J, MA Q, et al. Cross-domain representation learning by domain-migration generative adversarial network for sketch based image retrieval[J]. Journal of Visual Communication and Image Representation, 2020, 71:102835. [17] NAGPAL S, SINGH M, SINGH R, et al. Discriminative shared transform learning for sketch to image matching[J]. Pattern Recognition, 2021, 114:107815. [18] WANG X Y, TANG J, TAN S B. Three-way enhanced part-aware network for fine-grained sketch-based image retrieval[J]. Applied Intelligence, 2022, 52(10):10901-10916. [19] CHEN Y D, ZHANG Z L, WANG Y F, et al. AE-Net:fine-grained sketch-based image retrieval via attention-enhanced network[J]. Pattern Recognition, 2022, 122:108291. [20] SUN H F, XU J Q, WANG J Y, et al. DLI-net:dual local interaction network for fine-grained sketch-based image retrieval[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10):7177-7189. [21] JING T T, XIA H F, HAMM J, et al. Augmented multimodality fusion for generalized zero-shot sketch-based visual retrieval[J]. IEEE Transactions on Image Processing, 2022, 31:3657-3668. [22] TURSUN O, DENMAN S, SRIDHARAN S, et al. An efficient framework for zero-shot sketch-based image retrieval[J]. Pattern Recognition, 2022, 126:108528. [23] TIAN J L, XU X, SHEN F M, et al. TVT:three-way vision transformer through multi-modal hypersphere learning for zero-shot sketch-based image retrieval[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(2):2370-2378. [24] LIN M X, YANG J, WANG H, et al. Single image 3D shape retrieval via cross-modal instance and category contrastive learning[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2021:11385-11395. [25] QI A R, GRYADITSKAYA Y, SONG J F, et al. Toward fine-grained sketch-based 3D shape retrieval[J]. IEEE Transactions on Image Processing, 2021, 30:8595-8606. [26] 赵旭飞, 潘翔, 刘复昌, 等. 基于哈希自注意力端到端网络的三维模型草图检索[J]. 计算机辅助设计与图形学学报, 2021, 33(5):798-805. ZHAO X F, PAN X, LIU F C, et al. Hash self-attention end-to-end network for sketch-based 3D shape retrieval[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(5):798-805.(in Chinese) [27] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[EB/OL].[2023-03-05]. https://arxiv.org/abs/1409.7495. [28] JING L L, VAHDANI E, TAN J X, et al. Cross-modal center loss for 3D cross-modal retrieval[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2021:3142-3151. [29] XU F, YANG W, JIANG T B, et al. Mental retrieval of remote sensing images via adversarial sketch-image feature learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11):7801-7814. [30] SANGKLOY P, BURNELL N, HAM C, et al. The Sketchy database:learning to retrieve badly drawn bunnies[J]. ACM Transactions on Graphics, 2016, 35(4):119. [31] EITZ M, HAYS J, ALEXA M. How do humans sketch objects?[J]. ACM Transactions on Graphics, 2012, 31(4):44. [32] ZHANG H, LIU S, ZHANG C Q, et al. SketchNet:sketch classification with Web images[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2016:1105-1113. [33] SONG J F, YU Q, SONG Y Z, et al. Deep spatial-semantic attention for fine-grained sketch-based image retrieval[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2017:5552-5561. [34] RADENOVIC F, TOLIAS G, CHUM O. Deep shape matching[C]//Proceedings of European Conference on Computer Vision. Berlin,Germany:Springer, 2018:774-791. [35] JIANG T B, XIA G S, LU Q K, et al. Retrieving aerial scene images with learned deep image-sketch features[J]. Journal of Computer Science and Technology, 2017, 32(4):726-737. [36] DEY S, RIBA P, DUTTA A, et al. Doodle to search:practical zero-shot sketch-based image retrieval[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2019:2179-2188. [37] ZHEN L L, HU P, WANG X, et al. Deep supervised cross-modal retrieval[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2019:10394-10403. [38] JIAO S C, HAN X, XIONG F G, et al. Deep cross-modal discriminant adversarial learning for zero-shot sketch-based image retrieval[J]. Neural Computing and Applications, 2022, 34(16):13469-13483. [39] YELAMARTHI S K, REDDY S K, MISHRA A, et al. A zero-shot framework for sketch based image retrieval[C]//Proceedings of European Conference on Computer Vision. Berlin,Germany:Springer,2018:316-333. [40] DUTTA T, SINGH A, BISWAS S. StyleGuide:zero-shot sketch-based image retrieval using style-guided image generation[J]. IEEE Transactions on Multimedia, 2021, 23:2833-2842. [41] CHAUDHURI U, BANERJEE B, BHATTACHARYA A, et al. CrossATNet-a novel cross-attention based framework for sketch-based image retrieval[J]. Image and Vision Computing, 2020, 104:104003. [42] ZHANG Z L, ZHANG Y J, FENG R, et al. Zero-shot sketch-based image retrieval via graph convolution network[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12943-12950. [43] CHAUDHURI U, CHAVAN R, BANERJEE B, et al. BDA-SketRet:bi-level domain adaptation for zero-shot SBIR[J]. Neurocomputing, 2022, 514:245-255. [44] WANG H, DENG C, LIU T L, et al. Transferable coupled network for zero-shot sketch-based image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12):9181-9194. [45] LEE T, LIN Y L, CHIANG H, et al. Cross-domain image-based 3D shape retrieval by view sequence learning[C]//Proceedings of International Conference on 3D Vision. Washington D.C.,USA:IEEE Press,2018:258-266. [46] LI W H, SONG D, LIU A N, et al. SHREC 2020 track:extended monocular image based 3D model retrieval[EB/OL].[2023-03-05].https://www.semanticscholar.org/paper/SHREC-2020-Track%3A-Extended-Monocular-Image-Based-3D-Li-Song/ac7b6d06d49bd36341b8220192fa7ce59b0fcdf5. [47] SU Y T, LI Y Q, SONG D, et al. Consistent domain structure learning and domain alignment for 2D image-based 3D objects retrieval[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2020:883-889. [48] WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets:a deep representation for volumetric shape[EB/OL].[2023-03-05].https://arxiv.org/abs/1406.5670. [49] 杜雨佳, 李海生, 姚春莲, 等. 基于三元组网络的单图三维模型检索[J]. 北京航空航天大学学报, 2020, 46(9):1691-1700. DU Y J, LI H S, YAO C L, et al. Monocular image based 3D model retrieval using triplet network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9):1691-1700.(in Chinese) |