摘要: 在应用AdaBoost算法的人脸检测中,针对训练时间太长及权重调整过适应等问题,提出一种基于特征值等分和双阈值的增强型AdaBoost快速训练算法,给出了双阈值的快速搜索方法。在MIT-CBCL人脸和非人脸训练库上对算法进行了实现。实验结果显示,改进后的双阈值增强型AdaBoost算法简化了训练过程,训练速度提高50倍,收敛速度也更快。使用训练得到的检测器对MIT+CMU人脸测试库进行了测试,结果表明,该方法在检测精度和速度等方面都优于单阈值方法。
关键词:
dual-AdaBoost,
双阈值,
人脸检测
Abstract: Aiming at some problems of too much training time and weight adjustment over fitting in face detection by using AdaBoost. This paper proposes enhanced dual-AdaBoost algorithm based on feature-value-division and dual-threshold, which makes training faster and better. It gives a method to get dual-threshold, and presents the improved mode of weight adjustment. Experimental results on MIT-CBCL training data set illustrate that the dual-AdaBoost makes training process converge quickly, and the training time is as 1/50 as before. Experimental results on MIT+CMU with the detectors show that the detection speed and precision under the dual-threshold are better than single-threshold method.
Key words:
dual-AdaBoost,
dual-threshold,
face detection
中图分类号:
严云洋;郭志波;杨静宇. 基于双阈值的增强型AdaBoost快速算法[J]. 计算机工程, 2007, 33(21): 172-174.
YAN Yun-yang; GUO Zhi-bo; YANG Jing-yu. Fast Enhanced AdaBoost Algorithm Based on Dual-threshold[J]. Computer Engineering, 2007, 33(21): 172-174.