[1] ZHANG K P,ZHANG Z P,LI Z F,et al.Joint face detection and alignment using multi-task cascaded convolutional networks[J].IEEE Signal Processing Letters,2016,23(10):1499-1503. [2] REN S,HE K,GIRSHICK R,et al.Faster r-CNN:towards real-time object detection with region proposal networks[EB/OL].[2019-12-10].https://arxiv.org/pdf/1506.01497.pdf. [3] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot MultiBox detecto[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:21-37. [4] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of IEEE NIPS'12.Washington D.C.,USA:IEEE Press,2012:1097-1105. [5] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. [6] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-12-10].https://arxiv.org/pdf/1409.1556. [7] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [8] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:2818-2826. [9] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2019-12-10].https://arxiv.org/pdf/1602.07360. [10] HOWARD A G,ZHU M L,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2019-12-10].https://arxiv.org/pdf/1704.04861. [11] DAI J,QI H,XIONG Y,et al.Deformable convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:764-773. [12] NAJIBI M,SAMANGOUEI P,CHELLAPPA R,et al.SSH:single stage headless face detector[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:4875-4884. [13] LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramid networks for object detection[EB/OL].[2019-12-10].https://arxiv.org/pdf/1612.03144. [14] FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al.Object detection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645. [15] 宋超,许道云,秦永彬.分离多路卷积神经网络研究[J].计算机工程,2017,43(6):145-149,157. SONG C,XU D Y,QIN Y B.Research on detached multiple convolutional neural network[J].Computer Engineering,2017,43(6):145-149,157.(in Chinese) [16] 黄良辉,康祖超,张昌凡,等.基于轻量级卷积神经网络的人脸识别方法[J].湖南工业大学学报,2019,32(2):43-47. HUANG L H,KANG Z C,ZHANG C F,et al.Research on face recognition technology based on lightweight convolutional neural networks[J].Journal of Hunan University of Technology,2019,32(2):43-47.(in Chinese) [17] 蔡汉明,随玉腾,张镇,等.基于深度可分离卷积神经网络的农作物病害识别方法[J].安徽农业科学,2019,47(11):244-246,252. CAI H M,SUI Y T,ZHANG Z,et al.Crop disease recognition based on depthwise separable convolutional neural network[J].Journal of Anhui Agricultural Sciences 2019,47(11):244-246,252.(in Chinese) [18] 孙贵华,陈淑荣.一种改进的RefineDet多尺度人脸检测方法[J].电子技术应用,2019,45(8):34-39. SUN G H,CHEN S R.An improved RefineDet multi-scale face detection method[J].Application of electronic technology,2019,45(8):34-39.(in Chinese) [19] YANG S,LUO P,LOY C C,et al.Wider Face:a face detection benchmark[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:5525-5533. [20] CAI Z W,FAN Q F,FERIS R S,et al.A unified multi-scale deep convolutional neural network for fast object detection[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:354-370. |