[1] THIES J, ZOLLHOFER M, STAMMINGER M, et al.Face2Face:real-time face capture and reenactment of RGB videos[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2387-2395. [2] THIES J, ZOLLHOFER M, NIEßNER M.Deferred neural rendering:image synthesis using neural textures[J].ACM Transactions on Graphics, 2019, 38(4):1-12. [3] GUERA D, DELP E J.DeepFake video detection using recurrent neural networks[C]//Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance.Washington D.C., USA:IEEE Press, 2018:1-6. [4] 张怡暄, 李根, 曹纭, 等.基于帧间差异的人脸篡改视频检测方法[J].信息安全学报, 2020, 5(2):49-72. ZHANG Y X, LI G, CAO Y, et al.A method for detecting human-face-tampered videos based on Interframe difference[J].Journal of Cyber Security, 2020, 5(2):49-72.(in Chinese) [5] LI Y, LYU S.Exposing deepfake videos by detecting face warping artifacts[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:46-52. [6] MATERN F, RIESS C, STAMMINGER M.Exploiting visual artifacts to expose deep fakes and face manipulations[C]//Proceedings of 2019 IEEE Winter Applications of Computer Vision Workshops.Washington D.C., USA:IEEE Press, 2019:83-92. [7] YANG X, LI Y Z, LYU S, Exposing deep fakes using inconsistent head poses[EB/OL].[2020-11-10].https://arxiv.org/pdf/1811.00656v3.pdf. [8] TARIQ S, LEE S, KIM H, et al.Detecting both machine and human created fake face images in the wild[C]//Proceedings of the 2nd International Workshop on Multimedia Privacy and Security.Vancouver, Canada:CCS Press, 2018:81-87. [9] SABOUR S, FROSST N, HINTON G E.Dynamic routing between capsules[EB/OL].[2020-11-10].https://arxiv.org/abs/1710.09829v1. [10] LALONDE R, BAGCI U.Capsules for object segmentation[EB/OL].[2020-11-10].https://arxiv.org/pdf/1804.04241.pdf. [11] IESMANTAS T, ALZBUTAS R.Convolutional capsule network for classification of breast cancer histology images[C]//Proceedings of International Conference on Image Analysis and Recognition.Berlin, German:Springer, 2018:853-860. [12] NGUYEN H H, YAMAGISHI J, ECHIZEN I.Capsule-forensics:using capsule networks to detect forged images and videos[C]//Proceedings of IEEE International Conference on Acoustics.London, UK:IEEE Press, 2019:2307-2311. [13] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1800-1807. [14] ROSSLER A, COZZOLINO D, VERDOLIVA L, et al.FaceForensics++:learning to detect manipulated facial images[EB/OL].[2020-11-10].https://arxiv.org/pdf/1901.08971.pdf. [15] BONETTINI N, DANIELE E, MANDELLI S, et al.Video face manipulation detection through ensemble of CNNs[EB/OL].[2020-11-10].https://arxiv.org/pdf/2004.07676.pdf. [16] WANG X L, GIRSHICK R, GUPTA A, et al.Non-local neural networks[EB/OL].[2020-11-10].https://arxiv.org/pdf/1711.07971v3.pdf. [17] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. [18] DENG J K, GUO J, ZHOU Y X, et al, RetinaFace:single-stage dense face localisation in the wild[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:5202-5211. [19] AFCHAR D, NOZICK V, YAMAGISHI J, et al.MesoNet:a compact facial video forgery detection network[C]//Proceedings of 2018 IEEE International Workshop on Information Forensics and Security.Washington D.C., USA:IEEE Press, 2018:1-7. [20] TAN M, QUOC V.EfficientNet:rethinking model scaling for convolutional neural networks[C]//Proceedings of International Conference on Machine Learning.New York, USA:ACM Press, 2019:6105-6114. [21] SELVARAJU R R, COGSWELL M, DAS A, et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[J].International Journal of Computer Vision, 2020, 128(2):336-359. [22] MAATEN L V D.Accelerating T-SNE using tree-based algorithms[J].Journal of Machine Learning Research, 2014, 15(1):3221-3245. |