[1] PAN Zhigeng,LIU Rongfei,ZHANG Mingmin.Research on fatigue driving detection algorithm based on fuzzy comprehensive evaluation[J].Journal of Software,2019,30(10):2954-2963.(in Chinese)潘志庚,刘荣飞,张明敏.基于模糊综合评价的疲劳驾驶检测算法研究[J].软件学报,2019,30(10):2954-2963. [2] DINGES D F,GRACE R.PERCLOS:a valid psychophysiological measure of alertness as assessed by psychomotor vigilance:FHWA-MCRT-98-006[R].Washington D.C.,USA:Federal Highway Administration,1998. [3] JIE Z,MAHMOUD M,STAFFORD-FRASER Q,et al.Analysis of yawning behavior in spontaneous expressions of drowsy drivers[C]//Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition.Washington D.C.,USA:IEEE Press,2018:571-576. [4] MIN Qiusha,LIU Neng,CHEN Yating,et al.Head pose estimation based on facial feature point localization[J].Computer Engineering,2018,44(6):263-269.(in Chinese)闵秋莎,刘能,陈雅婷,等.基于面部特征点定位的头部姿态估计[J].计算机工程,2018,44(6):263-269. [5] RUIZ N,CHONG E,REHG J M.Fine-grained head pose estimation without keypoints[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2018:2074-2083. [6] HUANG Baisheng,JIANG Tao,ZHOU Weiguang.Performance analysis of HRRP ship target recognition based on deep learning[J].Modern Radar,2020,41(2):54-57.(in Chinese)黄柏圣,江涛,周伟光.基于深度学习的HRRP舰船目标识别性能分析.现代雷达,2020,41(2):54-57. [7] LI Shiguo,ZHANG Ruiguo,SUN Jingming,et al.A study on the architecture of radar ATR based on deep learning[J].Modern Radar,2019,40(11):57-61.(in Chinese)李士国,张瑞国,孙晶明,等.基于深度学习的雷达自动目标识别架构研究.现代雷达,2019,40(11):57-61. [8] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[EB/OL].[2019-08-04].https://arxiv.org/abs/1506.01497. [9] REDMON J,FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2019-08-04].https://arxiv.org/abs/1804.02767. [10] CHOI J,CHANG H J,FISCHER T,et al.Context-aware deep feature compression for high-speed visual tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:479-488. [11] LU Huchuan,LI Peixia,WANG Dong.Visual object tracking:a survey[J].Pattern Recognition and Artificial Intelligence,2018,31(1):61-76.(in Chinese)卢湖川,李佩霞,王栋.目标跟踪算法综述[J].模式识别与人工智能,2018,31(1):61-76. [12] SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:a unified embedding for face recognition and clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:815-823. [13] ZOU Guofeng,FU Guixia,GAO Mingliang,et al.Pose varied face recognition based on self learning deep convolutional neural network[J].Journal of Chinese Computer Systems,2018,39(6):1156-1162.(in Chinese)邹国锋,傅桂霞,高明亮,等.基于自学习深度卷积神经网络的姿态变化人脸识别[J].小型微型计算机系统,2018,39(6):1156-1162. [14] ANDERSON P,HE X,BUEHLER C,et al.Bottom-up and top-down attention for image captioning and casual question answering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:6077-6086. [15] ZHANG K P,ZHANG Z P,LI Z F,et al.Joint face detection and alignment using multitask cascaded convolutional networks[J].IEEE Signal Processing Letters,2016,23(10):1499-1503. [16] GUO Xiaojie,LI Siyuan,YU Jinke,et al.PFLD:a practical facial landmark detector[EB/OL].[2019-08-04].https://arxiv.org/abs/1902.10859. [17] ZHANG Xiangyu,ZHOU Xinyu,LIN Mengxiao,et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:6848-6856. [18] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:1251-1258. [19] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-08-04].https://arxiv.org/abs/1409.1556. [20] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [21] SANDLER M,HOWARD A,ZHU M,et al.MobileNetv2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:4510-4520. [22] HU G S,YAN F,JOSEF K,et al.Efficient 3D morphable face model fitting[J].Pattern Recognition,67(C):366-379. [23] FERRARIO V F,SFORZA C,SERRAO G,et al.Active range of motion of the head and cervical spine:a three-dimensional investigation in healthy young adults[J].Journal of Orthopaedic Research,2002,20(1):122-129. [24] YANG S,LUO P,LOY C C,et al.WIDER FACE:a face detection benchmark[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:5525-5533. [25] SAGONAS C,ANTONAKOS E,TZIMIROPOULOS G,et al.300 faces in-the-wild challenge:database and results[J].Image and Vision Computing,2016,47:3-18. [26] KOESTINGER M,WOHLHART P,ROTH P M,et al.Annotated facial landmarks in the wild:a large-scale,real-world database for facial landmark localization[C]//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops.Washington D.C.,USA:IEEE Press,2011:2144-2151. [27] BELHUMEUR P N,JACOBS D W,KRIEGMAN D J,et al.Localizing parts of faces using a consensus of exemplars[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(12):2930-2940. [28] ZHU X,RAMANAN D.Face detection,pose estimation,and landmark localization in the wild[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2012:2879-2886. [29] LE V,BRANDT J,LIN Z,et al.Interactive facial feature localization[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2012:679-692. [30] SAGONAS C,TZIMIROPOULOS G,ZAFEIRIOU S,et al.300 faces in-the-wild challenge:the first facial landmark localization challenge[C]//Proceedings of IEEE International Conference on Computer Vision Workshops.Washington D.C.,USA:IEEE Press,2013:397-403. [31] ABTAHI S,OMIDYEGANEH M,SHIRMOHAMMADI S,et al.YawDD:a yawning detection dataset[C]//Proceedings of the 5th ACM Multimedia Systems Conference.New York,USA:ACM Press,2014:24-28. |