[1] 任婕,侯博建,姜远.多示例学习下的深度森林架构[J].计算机研究与发展,2019,56(8):1670-1676. REN J,HOU B J,JIANG Y.Deep forest for multiple instance learning[J].Journal of Computer Research and Development,2019,56(8):1670-1676.(in Chinese) [2] SHI B,BAI X,LIU W,et al.Face alignment with deep regression[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(1):183-194. [3] VILLAMIZAR M,SANFELIU A,MORENO-NOGUER F.Online learning and detection of faces with low human supervision[J].The Visual Computer,2019,35(3):349-370. [4] JIANG J,MA J,CHEN C,et al.Noise robust face image super-resolution through smooth sparse representation[J].IEEE Transactions on Cybernetics,2017,47(11):3991-4002. [5] LI H,LIN Z,SHEN X,et al.A convolutional neural network cascade for face detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:5325-5334. [6] 魏赟,孙硕.生成对抗网络进行感知遮挡人脸还原的算法研究[J].小型微型计算机系统,2020,41(2):416-420. WEI Y,SUN S.Research on perceptual occlusion face restoration algorithms based on generative adversarial networks[J].Journal of Chinese Computer Systems,2020,41(2):416-420.(in Chinese) [7] 李婷婷,胡玉龙,魏枫林.基于GAN改进的人脸表情识别算法及应用[J].吉林大学学报(理学版),2020,58(3):605-610. LI T T,HU Y L,WEI F L.Improved facial expression recognition algorithm based on GAN and application[J]. Journal of Jilin University(Science Edition),2020,58(3):605-610.(in Chinese) [8] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [9] JIE H,LI S,GANG S.Squeeze and excitation networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:7132-7141. [10] WANG H,GONG D,LI Z,et al.Decorrelated adversarial learning for age-invariant face recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:3527-3536. [11] DENG J,GUO J,XUE N,et al.Arcface:additive angular margin loss for deep face recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:4690-4699. [12] WANG Y,GONG D,ZHOU Z,et al.Orthogonal deep features decomposition for age-invariant face recognition[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:738-753. [13] WANG H,WANG Y,ZHOU Z,et al.Cosface:large margin cosine loss for deep face recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:5265-5274. [14] TANG X,DU D K,HE Z,et al.PyramidBox:a context-assisted single shot face detector[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:797-813. [15] ZHANG S,WEN L,SHI H,et al.Single-shot scale-aware network for real-time face detection[J].International Journal of Computer Vision,2019,127(6/7):537-559. [16] OH H J,LEE K M,LEE S U.Occlusion invariant face recognition using selective local non-negative matrix factorization basis images[J].Image and Vision Computing,2008,26(11):1515-1523. [17] PARK S,LEE H,YOO J H,et al.Partially occluded facial image retrieval based on a similarity measurement[J].Mathematical Problems in Engineering,2015(1):1-11. [18] WRIGHT J,YANG A Y,GANESH A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227. [19] ZHAO F,FENG J,ZHAO J,et al.Robust LSTM-autoencoders for face de-occlusion in the wild[J].IEEE Transactions on Image Processing,2018,27(2):778-790. [20] TRIGUEROS D S,MENG L,HARTNETT M.Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss[J].Image and Vision Computing,2018,79:99-108. [21] WAN W,CHEN J.Occlusion robust face recognition based on mask learning[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C.,USA:IEEE Press,2017:3795-3799. [22] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [23] RUBLEE E,RABAUD V,KONOLIGE K,et al.ORB:an efficient alternative to SIFT or SURF[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2012:2564-2571. [24] BIAN J,LIN W Y,MATSUSHITA Y,et al.GMS:grid-based motion statistics for fast,ultra-robust feature correspondence[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2828-2837. [25] YANG S,LUO P,CHEN C L,et al.WIDER FACE:a face detection benchmark[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:5525-5533. [27] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:3431-3440. [28] ALEIX M,BENAVENTE R.The AR face database[J].CVC Technical Report,1998,24:1-8. [29] GE S,LI J,YE Q,et al.Detecting masked faces in the wild with LLE-CNNs[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2682-2690. |