作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2018, Vol. 44 ›› Issue (1): 274-279.

• 图形图像处理 • 上一篇    下一篇

基于面部行为分析的驾驶员疲劳检测方法

耿磊 1a,2,袁菲 1a,肖志涛 1a,2,张芳 1a,2,吴骏 1a,2,李月龙 1b,2   

  1. (1.天津工业大学 a.电子与信息工程学院; b.计算机科学与软件学院,天津 300387;2.天津市光电检测技术与系统重点实验室,天津 300387)
  • 收稿日期:2017-01-19 出版日期:2018-01-15 发布日期:2018-01-15
  • 作者简介:耿磊(1982—),男,副教授、博士,主研方向为图像处理、模式识别智能信号处理、;袁菲,硕士研究生;肖志涛(通信作者),教授、博士;张芳、吴骏、李月龙,副教授、博士。
  • 基金资助:

    国家自然科学基金(61601325);天津市科技支撑计划重点项目(14ZCZDGX00033);天津市科技特派员项目(15JCTPJC56300)。

Driver Fatigue Detection Method Based on Facial Behavior Analysis

GENG Lei  1a,2,YUAN Fei  1a,XIAO Zhitao  1a,2,ZHANG Fang  1a,2,WU Jun  1a,2,LI Yuelong  1b,2   

  1. (1a.School of Electronics and Information Engineering; 1b.School of Computer Science and Software Engineering,Tianjin Polytechnic University,Tianjin 300387,China;2.Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems,Tianjin 300387,China)
  • Received:2017-01-19 Online:2018-01-15 Published:2018-01-15

摘要:

眼睛和嘴部状态检测是疲劳检测方法的重要步骤,但眼镜遮挡及光照变化使得眼睛状态识别效果不佳。为此,提出一种新的驾驶员疲劳检测方法。使用红外采集设备对驾驶员面部图像进行采集,通过结合AdaBoost与核相关滤波器算法进行人脸检测及跟踪。采用级联回归方法定位特征点,提取眼睛和嘴部区域。运用卷积神经网络进行眼睛和嘴部状态识别,在此基础上计算多个疲劳参数进行疲劳检测。实验结果表明,该方法在多种情况下均能准确地检测眼睛和嘴部状态,可有效地进行疲劳检测。

关键词: 疲劳检测, 人脸检测, 特征点检测, 状态识别, 核相关滤波器, 卷积神经网络

Abstract:

The state detection method of eye and mouth is the key issue for fatigue detection,but it is affected by changing of illumination and wearing glasses.To solve above problems,a fatigue detection method based on facial behavior analysis is proposed.It designs an infrared video acquisition system for driver.The driver’s face is detected based on AdaBoost and the Kernelized Correlation Filter(KCF) tracking algorithm.The feature points are determined by the method of cascade regression,and the eye and mouth regions are obtained.Convolution Neural Network(CNN) is utilized to detect the state of eye and mouth.On this basis,the fatigue parameters are calculated for fatigue detection.Experimental results show that the method can detect the state of eye and mouth accurately and detect fatigue more effectively in many circumstances.

Key words: fatigue detection, face detection, feature point detection, state recognition, Kernelized Correlation Filter(KCF), Convolution Neural Network(CNN)

中图分类号: