摘要: 介绍了一种红外双色目标识别算法。该算法将通过二维傅立叶小波变换对图像提取的特征作为特征向量,这组特征向量具有旋转、平移和尺度不变性。利用Dempster-Shafer(D-S)证据理论进行图像融合,并使用神经网络分类器进行分类。实验结果表明,该算法提高了对近似物体的识别能力,能对飞机、舰船等目标进行有效的识别。
关键词:
红外双色,
目标识别,
傅立叶小波变换,
神经网络
Abstract: This paper proposes an algorithm of infrared bicolor target recognition, in which 2D Fourier-wavelet transform is applied to extract the features of image, and the Fourier-wavelet description for the object recognition is regarded as vector characteristics, characterized with invariancy to translations, scaling and rotation. It improves the rate of target recognition by using D-S theory and netural network classifier. Experimental results show this algorithm can identify the aircraft and the warship objects effectively.
Key words:
infrared bicolor,
target recognition,
Fourier-wavelet transform,
netural network
中图分类号:
彭春燕;李赣华;吴琼玉;蔡宣平. 红外双色目标识别技术[J]. 计算机工程, 2007, 33(21): 194-196.
PENG Chun-yan; LI Gan-hua; WU Qiong-yu; CAI Xuan-ping. Infrared Bicolor Target Recognition[J]. Computer Engineering, 2007, 33(21): 194-196.