摘要: 针对基于频繁项集的关联规则挖掘算法效率低,需要多次扫描数据库且生成冗余候选项集问题,该文利用频繁项集的Aprior性质和概念格的基本思想提出一种关联规则提取算法,利用极大频繁项集来进行规则提取,去除了多数冗余的候选项集,提高了提取效率。
关键词:
关联规则,
数据挖掘,
频繁项集,
概念格,
提取
Abstract: Association rules mining is an important research branch in data mining. However, most algorithms based on frequent item sets have to scan databases many times, which reduces extraction efficiency. This paper presents an algorithm to find all maximal frequent item sets quickly. The algorithm is based on concept lattice and it can certify all frequent item sets efficiently, which avoids calculating the redundant item sets and improves the extraction efficiency.
Key words:
association rules,
data mining,
frequent item sets,
concept lattice,
extraction
中图分类号:
刘利峰;吴孟达. 关联规则的快速提取算法[J]. 计算机工程, 2008, 34(5): 63-65.
LIU Li-feng; WU Meng-da. Fast Algorithm for Association Rules Extraction[J]. Computer Engineering, 2008, 34(5): 63-65.