摘要: 针对目前入侵检测系统误报率过高、检测率不高和对未知入侵检测能力有限的缺陷,提出一种基于模糊SOFM的网络入侵检测方法,经训练后可形成一个稳定的神经网络系统,有效地识别网络正常行为和异常行为。采用KDD99数据集对系统进行实验,结果表明,系统在保持误报率低于3%的情况下,入侵检测率最高可以达到92%以上。
关键词:
入侵检测,
神经网络,
模糊技术,
自组织特征映射
Abstract: Considering current intrusion detection system with high misinformation rate and low detection rate, this paper applies fuzzy Self- Organizing Feature Map(SOFM) neural network to intrusion detection. After being trained, the fuzzy SOFM network can become a stable nerve network system and identify a network normal and abnormal behavior effectively. Experimental results show that using the KDD99 databases, intrusion detection rate is more than 92% when the misinformation rate is below 3%.
Key words:
intrusion detection,
neural network,
fuzzy technology,
Self-Organizing Feature Map(SOFM)
中图分类号:
胡玉荣. 基于模糊SOFM的网络入侵检测方法[J]. 计算机工程, 2008, 34(11): 155-156,.
HU Yu-rong. Method of Network Intrusion Detection Based on Fuzzy SOFM[J]. Computer Engineering, 2008, 34(11): 155-156,.