作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2009, Vol. 35 ›› Issue (24): 199-201.

• 人工智能及识别技术 • 上一篇    下一篇

基于神经网络的Agent个性化行为选择

肖 正,张世永   

  1. (复旦大学计算机科学技术学院,上海 200433)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-12-20 发布日期:2009-12-20

Agent Individualized Action Selection Based on Neural Network

XIAO Zheng, ZHANG Shi-yong   

  1. (School of Computer Science, Fudan University, Shanghai 200433)
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-12-20 Published:2009-12-20

摘要: 在基于效用的行为选择模型基础上对多Agent系统中个性建模问题进行研究。利用人工神经网络能够学习到人类难以理解的目标函数的特点,结合心理学中个性的五因素模型建立Agent个性神经网络,通过不同参数反映个性对效用变化的影响方式,具有更强的个性表征能力。设计梯度下降的学习算法训练Agent相应的个性神经网络。实验验证了该模型刻画Agent个性的有效性。

关键词: 智能体, 行为选择, 神经网络

Abstract: Based on utility-based action selection model, this paper researches on personality modeling in multi-Agent system. That artificial neural network can learn target function which is hard to comprehend draws attention. So an individualized neural network is built according to five-factor model in psychology. Different setting on parameters reflects the way that personality influences utility of actions. This model has stronger ability to describe personality. A gradient descending learning algorithm is proposed to train the individualized neural network. The model is validated on personality exhibition during action selection.

Key words: Agent, action selection, neural network

中图分类号: