摘要:
基于主成分分析技术、独立分量分析技术以及多数据流模型,将用于数据和信号分析的PCA/ICA方法应用于多数据流模型,提出多数据流关联度分析和模式发现的新模型。该模型适用于解决在线混合数据流分离,对挖掘多数据流潜在独立内因有良好效果。探讨模型的健壮性和实时性,并在实验中验证了系统性能。
关键词:
数据流,
主成分分析,
独立成分分析,
多数据流关联
Abstract:
This paper introduces a model based on Principal Component Analysis(PCA), Independent Component Analysis(ICA) and multiple data stream model which supplies a new method of multiple data stream relation analysis and pattern discovery. As PCA/ICA can separate independent components from complicated information, a solution can be implemented with the help of PCA/ICA on multiple data stream relation analysis, pattern discovery and hidden variables. The robustness and real-time performance are also discussed in the experiment.
Key words:
data stream,
Principal Component Analysis(PCA),
Independent Component Analysis(ICA),
multiple data stream relation
中图分类号:
周勇, 罗竞佳, 程春田. 基于PCA/ICA的多数据流关联及模式发现[J]. 计算机工程, 2010, 36(11): 85-87.
ZHOU Yong, LUO Jing-Jia, CHENG Chun-Tian. Multiple Data Stream Relation and Pattern Discovery Based on PCA/ICA[J]. Computer Engineering, 2010, 36(11): 85-87.