[1] SUN Shiliang,SHI Honglei,WU Yuanbin.A survey of multi-source domain adaptation[J].Information Fusion,2015,24:84-92. [2] JI Dingcheng,JIANG Yizhang,WANG Shitong.Multi-source transfer learning method by balancing both the domains and instances[J].Acta Electronica Sinica,2019,47(3):692-699.(in Chinese)季鼎承,蒋亦樟,王士同.基于域与样例平衡的多源迁移学习方法[J].电子学报,2019,47(3):692-699. [3] KRAWCZYK B.Active and adaptive ensemble learning for online activity recognition from data streams[J].Knowledge-Based Systems,2017,138(15):69-78. [4] HOSSEINI M J,GHOLIPOUR A,BEIGY H.An ensemble of cluster-based classifiers for semi-supervised classification of non-stationary data streams[J].Knowledge and Information Systems,2016,46(3):567-597. [5] SHU Xing,YU Huimin,ZHENG Weiwei,et al.Classifier-designing algorithm on a small dataset based on margin Fisher criterion and transfer learning[J].Acta Automatica Sinica,2016,42(9):1313-1321.(in Chinese)舒醒,于慧敏,郑伟伟,等.基于边际Fisher准则和迁移学习的小样本集分类器设计算法[J].自动化学报,2016,42(9):1313-1321. [6] AGHAMALEKI J A,BAHARLOU S M.Transfer learning approach for classification and noise reduction on noisy Web data[J].Expert Systems with Applications,2018,105:221-232. [7] HANG Wenlong,JIANG Yizhang,LIU Jiefang,et al.Transfer affinity propagation clustering algorithm[J].Journal of Software,2016,27(11):2796-2813.(in Chinese)杭文龙,蒋亦樟,刘解放,等.迁移近邻传播聚类算法[J].软件学报,2016,27(11):2796-2813. [8] GE Liang,GAO Jing,ZHANG Aidong.OMS-TL:a framework of online multiple source transfer learning[C]//Proceedings of the 22nd ACM International Conference on Information and Knowledge Management.New York,USA:ACM Press,2013:2423-2428. [9] WU Qingyao,ZHOU Xiaoming,YAN Yuguang,et al.Online transfer learning by leveraging multiple source domains[J].Knowledge and Information Systems,2017,52(3):1-21. [10] WU Qingyao,WU Hanrui,ZHOU Xiaoming,et al.Online transfer learning with multiple homogeneous or heterogeneous sources[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(7):1494-1507. [11] TANG Shiqi,WEN Yimin,QIN Yixiu,et al.Online transfer learning from multiple sources based on local classification accuracy[J].Journal of Software,2017,28(11):2940-2960.(in Chinese)唐诗淇,文益民,秦一休,等.一种基于局部分类精度的多源在线迁移学习算法[J].软件学报,2017,28(11):2940-2960. [12] WEN Yimin,TANG Shiqi,FENG Chao,et al.Online transfer learning for mining recurring concept in data stream classification[J].Journal of Computer Research and Development,2016,53(8):1781-1791.(in Chinese)文益民,唐诗淇,冯超,等.基于在线迁移学习的重现概念漂移数据流分类[J].计算机研究与发展,2016,53(8):1781-1791. [13] BHATT H S,RAJKUMAR A,ROY S.Multi-source iterative adaptation for cross-domain classification[C]//Proceedings of International Joint Conference on Artificial Intelligence.New York,USA:ACM Press,2016:3691-3697. [14] BIAN Zekang,WANG Shitong.Similarity-learning based multi-source transfer learning algorithm[J].Control and Decision,2017,32(11):1941-1948.(in Chinese)卞则康,王士同.基于相似度学习的多源迁移算法[J].控制与决策,2017,32(11):1941-1948. [15] YAN Yuguang,WU Qingyao,TAN Mingkui,et al.Online heterogeneous transfer learning by weighted offline and online classifiers[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:467-474. [16] QIN Yixiu,WEN Yimin,HE Qian.Multi-source online transfer learning algorithm for classification of data streams with concept drift[J].Computer Science,2019,46(1):64-72.(in Chinese)秦一休,文益民,何倩.概念漂移数据流分类中的多源在线迁移学习算法[J].计算机科学,2019,46(1):64-72. [17] BLASZCZYNSKI J,STEFANOWSKI J,ZAJAC M.Ensembles of abstaining classifiers based on rule sets[C]//Proceedings of International Symposium on Methodologies for Intelligent Systems.Berlin,Germany:Springer,2009:382-391. [18] PIETRASZEK T.On the use of ROC analysis for the optimization of abstaining classifiers[J].Machine Learning,2007,68(2):137-169. [19] PIETRASZEK T.Classification of intrusion detection alerts using abstaining classifiers[J].Intelligent Data Analysis,2007,11(3):293-316. [20] HOLMES G,KIRKBY R,PFAHRINGER B.MOA:massive online analysis[EB/OL].[2019-03-25].http://sourceforge.net/projects/moa-datastream. [21] HULTEN G,SPENCER L,DOMINGOS P.Mining time-changing data streams[C]//Proceedings of International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2001:97-106. |