作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2010, Vol. 36 ›› Issue (15): 283-285. doi: 10.3969/j.issn.1000-3428.2010.15.100

• 开发研究与设计技术 • 上一篇    下一篇

基于加权欧式距离的替代率估算方法

滕在霞1,刘 悦1,高峻峻2   

  1. (1. 上海大学计算机工程与科学学院,上海 200072;2. 上海大学悉尼工商学院,上海 201800)
  • 出版日期:2010-08-05 发布日期:2010-08-25
  • 作者简介:滕在霞(1985-),女,硕士研究生,主研方向:数据挖掘,零售企业的需求预测;刘 悦、高峻峻,副教授、博士
  • 基金资助:
    国家自然科学基金资助项目(70502020);上海市自然科学基金资助项目(09ZR1412600);上海大学创新基金资助项目(A.10010808904);上海大学研究生创新基金资助项目(A.16010809510);上海市重点学科建设基金资助项目(J50103)

Substitution Rate Estimation Method Based on Weighted Euclid Distance

TENG Zai-xia1, LIU Yue1, GAO Jun-jun2   

  1. (1. School of Computer Engineering & Science, Shanghai University, Shanghai 200072; 2. Sydney Institute of Language and Commerce, Shanghai University, Shanghai 201800)
  • Online:2010-08-05 Published:2010-08-25

摘要: 为正确估算产品间的替代率,提高需求预测准确率,提出一种基于加权欧式距离的邻近替代率估计方法,建立基于支持向量机的需求预测模型。在洗面奶数据集中的应用结果表明,该方法预测精度较高,具有客观性和有效性。

关键词: 邻近替代, 加权欧式距离, 复相关系数, 支持向量机, 需求预测

Abstract: In this paper, an adjacent substitution rate estimation method based on weighted Euclid distance is proposed in order to improve the disadvantage of estimating weight by experience. It is based on Support Vector Machine(SVM). The proposed method is applied to the demand forecast of facial cleaning category. Experimental results identify that the predict precision is improved and the objectivity and robustness are both well.

Key words: adjacent substitution, weighted Euclid distance, compound correlation coefficient, Support Vector Machine(SVM), demand forecast

中图分类号: