1 |
VAN DEN BOGERT N, VAN BRUGGEN J, KOSTONS D, et al. First steps into understanding teachers' visual perception of classroom events. Teaching and Teacher Education, 2014, 37, 208- 216.
doi: 10.1016/j.tate.2013.09.001
|
2 |
SHI Y W, WANG M K, CHEN Z Z, et al. The impacts of instructor's visual attention and lecture type on students' learning performance and perceptions. Education and Information Technologies, 2024, 1- 29.
|
3 |
CONTY L, GEORGE N, HIETANEN J K. Watching eyes effects: when others meet the self. Consciousness and Cognition, 2016, 45, 184- 197.
doi: 10.1016/j.concog.2016.08.016
|
4 |
BOLKAN S, GOODBOY A K, MYERS S A. Conditional processes of effective instructor communication and increases in students' cognitive learning. Communication Education, 2017, 66(2): 129- 147.
doi: 10.1080/03634523.2016.1241889
|
5 |
陈增照, 石雅文, 王梦珂, 等. 智能技术支持的教师注意力分析与评价研究. 现代教育技术, 2024, 34(4): 100- 111.
URL
|
|
CHEN Z Z, SHI Y W, WANG M K, et al. Research on the analysis and evaluation of teachers' attention supported by intelligent technology. Modern Educational Technology, 2024, 34(4): 100- 111.
URL
|
6 |
WANG K, ZHAO R, JI Q. Human computer interaction with head pose, eye gaze and body gestures[C]//Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition. Washington D. C., USA: IEEE Press, 2018: 789-789.
|
7 |
GRINSHPOON A, SADRI S, LOEB G J, et al. Hands-free interaction for augmented reality in vascular interventions[C]//Proceedings of IEEE Conference on Virtual Reality and 3D User Interfaces. Washington D. C., USA: IEEE Press, 2018: 751-752.
|
8 |
闫兴亚, 匡娅茜, 白光睿, 等. 基于深度学习的学生课堂行为识别方法. 计算机工程, 2023, 49(7): 251- 258.
URL
|
|
YAN X Y, KUANG Y X, BAI G R, et al. Student classroom behavior recognition method based on deep learning. Computer Engineering, 2023, 49(7): 251- 258.
URL
|
9 |
BOSCH N, D'MELLO S K. Automatic detection of mind wandering from video in the lab and in the classroom. IEEE Transactions on Affective Computing, 2021, 12(4): 974- 988.
doi: 10.1109/TAFFC.2019.2908837
|
10 |
郑伟成, 李学伟, 刘宏哲, 等. 基于深度学习的疲劳驾驶检测算法. 计算机工程, 2020, 46(7): 21- 29.
URL
|
|
ZHENG W C, LI X W, LIU H Z, et al. Fatigue driving detection algorithm based on deep learning. Computer Engineering, 2020, 46(7): 21- 29.
URL
|
11 |
NG J, GONG S G. Composite support vector machines for detection of faces across views and pose estimation. Image and Vision Computing, 2002, 20(5/6): 359- 368.
|
12 |
RAYTCHEV B, YODA I, SAKAUE K. Head pose estimation by nonlinear manifold learning[C]//Proceedings of the 17th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2004: 462-466.
|
13 |
TULYAKOV S, VIERIU R L, SEMENIUTA S, et al. Robust real-time extreme head pose estimation[C]//Proceedings of the 22nd International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 2263-2268.
|
14 |
HUANG G B, NARAYANA M, LEARNED-MILLER E. Towards unconstrained face recognition[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2008: 1-8.
|
15 |
XIA J H, CAO L B, ZHANG G J, et al. Head pose estimation in the wild assisted by facial landmarks based on convolutional neural networks. IEEE Access, 2019, 7, 48470- 48483.
doi: 10.1109/ACCESS.2019.2909327
|
16 |
RUIZ N, CHONG E, REHG J M. Fine-grained head pose estimation without keypoints[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 2074-2083.
|
17 |
RANJAN R, SANKARANARAYANAN S, CASTILLO C D, et al. An all-In-one convolutional neural network for face analysis[C]//Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition. Washington D. C., USA: IEEE Press, 2017: 17-24.
|
18 |
WAN S, CHEN Z Z, WANG M K, et al. Teacher attention measurement based on head pose estimation[C]//Proceedings of International Conference on Intelligent Education and Intelligent Research. Washington D. C., USA: IEEE Press, 2022: 1-7.
|
19 |
HEMPEL T, ABDELRAHMAN A A, AL-HAMADI A. Toward robust and unconstrained full range of rotation head pose estimation. IEEE Transactions on Image Processing, 2024, 33, 2377- 2387.
doi: 10.1109/TIP.2024.3378180
|
20 |
STEINWART I, CHRISTMANN A. Support vector machines. New York, USA: ACM Press, 2008.
|
21 |
XU Y K, ZHOU X L, CHEN S Y, et al. Deep learning for multiple object tracking: a survey. IET Computer Vision, 2019, 13(4): 355- 368.
doi: 10.1049/iet-cvi.2018.5598
|
22 |
LI W, LI H L, WU Q B, et al. HeadNet: an end-to-end adaptive relational network for head detection. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(2): 482- 494.
doi: 10.1109/TCSVT.2019.2890840
|
23 |
ZHOU Y, BARNES C, LU J W, et al. On the continuity of rotation representations in neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5745-5753.
|
24 |
BOUTTIER J, DI FRANCESCO P, GUITTER E. Geodesic distance in planar graphs. Nuclear Physics B, 2003, 663(3): 535- 567.
doi: 10.1016/S0550-3213(03)00355-9
|