[1] 马毅慧, 郭家平, 王虎中, 等.咬合主功能区调整对食物嵌塞治疗效果临床观察[J].临床口腔医学杂志, 2013, 29(11):683-685. MA Y H, GUO J P, WANG H Z, et al.Clinical studies of occlusal adjustment with main founctional zones for food impaction[J].Journal of Clinical Stomatology, 2013, 29(11):683-685.(in Chinese) [2] 王月.量化调(牙合)治疗垂直型食物嵌塞临床相关参数的CBCT研究[D].太原:山西医科大学. WANG Y.CBCT study of clinical parameters related to quantitative adjustment (occlusion) in the treatment of vertical food impaction[D].Taiyuan:Shanxi Medical University.(in Chinese) [3] KONDO T, ONG S H, FOONG K.Tooth segmentation of dental study models using range images[J].IEEE Transactions on Medical Imaging2004, 23(3):350-362. [4] GRZEGORZEK M, TRIERSCHEID M, D PAPOUTSIS, et al.A multi-stage approach for 3D segmentation from dentition surfaces[C]//Processing of the 4th International Conference on Image and Signal.Berlin, Germany:Springer, 2010:521-530. [5] WONGWAEN N, SINTHANAYOTHIN C.Computerized algorithm for 3D teeth segmentation[C]//Proceedings of International Conference on Electronics and Information Engineering.Washington D.C., USA:IEEE Press, IEEE Press, 2010:271-277. [6] KUMAR Y, JANARDAN R, LARSON B, et al.Improved segmentation of teeth in dental models[J].Computer-Aided Design and Applications, 2011, 8(2):211-224. [7] HARLES R Q, HAO S, MO K C, et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:77-85. [8] XU X J, LIU C, ZHENG Y Y.3D tooth segmentation and labeling using deep convolutional neural networks[J].IEEE Transactions on Visualization and Computer Graphics, 2019, 25(7):2336-2348. [9] TIAN S K, DAI N, ZHANG B, et al.Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks[J].IEEE Access, 2019, 7:84817-84828. [10] LIAN C F, WANG L, WU T H, et al.Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners[J].IEEE Transactions on Medical Imaging, 2020, 39(7):2440-2450. [11] SUN D Y, PEI Y R, SONG G Y, et al.Tooth segmentation and labeling from digital dental casts[C]//Proceedings of the 17th International Symposium on Biomedical Imaging.Washington D.C., USA:IEEE Press, 2020:669-673. [12] CHEN Y L, DU H Y, YUN Z Q, et al.Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a multi-task FCN[J].IEEE Access, 2020, 8:97296-97309. [13] ROYNARD X, DESCHAUD J E, GOULETTE F.Classification of point cloud scenes with multiscale voxel deep network[EB/OL].[2021-05-16].https://arxiv.org/abs/1804.03583. [14] BEN-SHABAT Y, LINDENBAUM M, FISCHER A.3DmFV:three-dimensional point cloud classification in real-time using convolutional neural networks[J].IEEE Robotics and Automation Letters, 2018, 3(4):3145-3152. [15] ZHAO H S, JIANG L, FU C W, et al.PointWeb:enhancing local neighborhood features for point cloud processing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:5560-5568. [16] WANG L, HUANG Y, HOU Y, et al.Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10296-10305. [17] XIE S N, LIU S N, CHEN Z Y, et al.Attentional ShapeContextNet for point cloud recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4606-4615. [18] MAO J G, WANG X G, LI H S.Interpolated convolutional networks for 3D point cloud understanding[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Washington D.C., USA:IEEE Press, 2019:1578-1587. [19] THOMAS H, QI C R, DESCHAUD J E, et al.KPConv:flexible and deformable convolution for point clouds[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6410-6419. [20] WU Z W, LI G, WANG L, et al.Registration-free infant cortical surface parcellation using deep convolutional neural networks[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2018:672-680. [21] BOYKOV Y, VEKSLER O, ZABIH R.Fast approximate energy minimization via graph cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11):1222-1239. [22] LIAN C F, WANG L, WU T H, et al.Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners[J].IEEE Transactions on Medical Imaging, 2020, 39(7):2440-2450. [23] JOACHIMS T.Aking large-scale SVM learning practical[EB/OL].[2021-05-16].https://ideas.repec.org/p/zbw/sfb475/199828.html. |