[1] LIU Wangshu,CHEN Xiang,GU Qing,et al.A noise tolerable feature selection framework for software defect prediction[J].Chinese Journal of Computers,2018,41(3):506-520.(in Chinese)刘望舒,陈翔,顾庆,等.一种面向软件缺陷预测的可容忍噪声的特征选择框架[J].计算机学报,2018,41(3):506-520. [2] REN Yonggong,WANG Yuling,LIU Yang,et al.Unsupervised feature selection algorithm for dynamic network media data based on user correlation[J].Chinese Journal of Computers,2018,41(7):1517-1535.(in Chinese)任永功,王玉玲,刘洋,等.基于用户相关性的动态网络媒体数据无监督特征选择算法[J].计算机学报,2018,41(7):1517-1535. [3] PENG H C,LONG F H,DING C.Feature selection based on mutual information criteria of max-dependency,max-relevance,and min-redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238. [4] MA Xin,SUN Xiao.Sequence-based predictor of ATP-binding residues using random forest and mRMR-IFS feature selection[J].Journal of Theoretical Biology,2014,360(25):59-66. [5] UNLER A,MURAT A,CHINNAM R B.Mr2PSO:a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification[J].Information Sciences,2011,181(20):4625-4641. [6] YANG Yongqiang,LI Shuhong.Hole repairing algorithm for point cloud data based on least square support vector machine[J].Journal of Jilin University:Science Edition,2018,64(3):692-696.(in Chinese)杨永强,李淑红.最小二乘支持向量机的点云数据孔洞修补算法[J].吉林大学学报:理学版,2018,64(3):692-696. [7] DING C,PENG H C.Minimum redundancy feature selection from microarray gene expression data[J].Journal of Bioinformatics and Computational Biology,2005,3(2):185-205. [8] ZHANG Hongyan,LI Lanzhi,LUO Chao,et al.Informative gene selection and direct classification of tumor based on chi-square test of pairwise gene interactions[J].Journal of Biomedicine and Biotechnology,2014,2014:1-9. [9] RESHEF D N,RESHEF Y A,FINUCANE H K,et al.Detecting novel associations in large data sets[J].Science,2011,334(6062):1518-1524. [10] SPEED T.A correlation for the 21st century[J].Science,2011,334(6062):1502-1503. [11] IGNAC T M,SKUPIN A,SAKHANENKO N A,et al.Discovering pair-wise genetic interactions:an information theory-based approach[J].PLoS ONE,2014,9(3):1-9. [12] ZHANG Yi,JIA Shilin,HUANG Haiyun,et al.A novel algorithm for the precise calculation of the maximal information coefficient[J].Scientific Reports,2014,4(4):6662-6669. [13] CHEN L,HELENA C,DMITRIY D,et al.Maximal information coefficient for feature selection for clinical document classification[J].Acta Physico-Chimica Sinica,2012,28(8):963-970. [14] DAS J,MOHAMMED J,YU H Y.Genome-scale analysis of interaction dynamics reveals organization of biological networks[J].Bioinformatics,2012,28(14):1873-1878. [15] ANDERSON T K,LAEGREID W W,CERUTTI F,et al.Ranking viruses:measures of positional importance within networks define core viruses for rational polyvalent vaccine development[J].Bioinformatics,2012,28(12):1624-1632. [16] CHEN Yuan,ZENG Ying,LUO Feng,et al.A new algorithm to optimize maximal information coefficient[J].PLoS ONE,2016,11(6):1-13. [17] CHANG C C,LIN C J.LIBSVM[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-27. [18] ZHOU Hongbiao,QIAO Junfei.Feature selection method based on high dimensional k-nearest neighbors mutual information[J].CAAL Transactions on Intelligent Systems,2017,12(5):595-600.(in Chinese)周红标,乔俊飞.基于高维k-近邻互信息的特征选择方法[J].智能系统学报,2017,12(5):595-600. [19] ARMANFARD N,REILLY J P,KOMEILI M.Local feature selection for data classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(6):1217-1227. [20] CHEN Yuan,CAO Dan,GAO Jun,et al.Discovering pair-wise synergies in microarray data[EB/OL].[2019-06-01].https://pubmed.ncbi.nlm.nih.gov/27470995/. |