[1] ZHANG Zisheng,PARHI K K.Low-complexity seizure prediction from IEEG/sEEG using spectral power and ratios of spectral power[J].IEEE Transactions on Biomedical Circuits and Systems,2016,10(3):693-706. [2] SHARIF B,JAFARI A H.Prediction of epileptic seizures from EEG using analysis of ictal rules on Poincaré plane[J].Computer Methods and Programs in Biomedicine,2017,145:11-22. [3] AARUNI V C,HARSHA A,JOSEPH L A.Classification of EEG signals using fractional calculus and wavelet support vector machine[C]//Proceedings of IEEE International Conference on Signal Processing,Informatics,Communication and Energy Systems.Washington D.C.,USA:IEEE Press,2015:1-5. [4] RASHID M M,AHMAD M.Epileptic seizure classification using statistical features of EEG signal[C]//Proceedings of International Conference on Electrical,Computer and Communication Engineering.Washington D.C.,USA:IEEE Press,2017:308-312. [5] XIANG Jie,LI Conggai,LI Haifang,et al.The detection of epileptic seizure signals based on fuzzy entropy[J].Journal of Neuroscience Methods,2015,243:18-25. [6] LI Jing,YAN Jiaqing,LIU Xianzeng,et al.Using permutation entropy to measure the changes in EEG signals during absence seizures[J].Entropy,2014,16(6):3049-3061. [7] ASSI E B,NGUYEN D K,RIHANA S,et al.Towards accurate prediction of epileptic seizures:a review[J].Biomedical Signal Processing and Control,2017,34:144-157. [8] 董国亚,陈小刚,史姗姗,等.相位同步性分析方法在癫痫研究中的应用[J].北京生物医学工程,2011,30(3):274-277. [9] 何艳,于云莉,杨帆,基于复杂网络可视化的癫痫患者大脑状态研究[J].中国医疗设备,2016,31(9):39-42. [10] 裘嘉恒,李雅堂,许坤涵,等.癫痫发作间期alpha波的窄带相位同步分析[J].生物物理学报,2008,24(3):221-226. [11] 李红利,王江,邓斌.癫痫脑电的互信息和同步性分析[J].计算机工程与应用,2013,49(6):19-22. [12] 王振宇,薛青,熊秀春.基于静息态脑电的心因性非癫痫性发作患者脑功能网络分析及分类识别研究[J].生物医学工程学杂志,2015(1):8-12. [13] ELAHIAN B,YEASIN M,MUDIGOUDAR B,et al.Identifying seizure onset zone from electrocorticographic recordings:a machine learning approach based on phase locking value[J].Seizure,2017,51:35-42. [14] SUPRIYA S,SIULY S,WANG Hua,et al.Weighted visibility graph with complex network features in the detection of epilepsy[J].IEEE Access,2016,4:6554-6566. [15] GAO Zhongke,CAI Qing,YANG Yuxuan,et al.Visibility graph from adaptive optimal kernel time- frequency representation for classification of epileptiform EEG[J].International Journal of Neural Systems,2017,27(4). [16] 刘海红.基于复杂网络统计特性的非线性时间序列分析方法研究[D].济南:济南大学,2017. [17] 王慧云,窦大庆,曹锐,等.用于癫痫EEG分析的排列模糊熵新算法[J].太原理工大学学报,2017,48(1):91-96. |