摘要: 针对增强现实中的三维注册问题,提出一种基于机器学习的图像自然特征点识别方法。基于高斯混合模型进行样本选择,利用模式识别中的分类方法替代特征向量的最近邻匹配,将计算负担从实时阶段转移到训练阶段,利用各匹配点对之间的相似度计算核密度估计的权值,实现相关平面目标的跟踪。实验结果表明,该方法实时性好、相机位姿估计精确,对光照、遮挡、透视等变化具有较强的鲁棒性。
关键词:
机器学习,
自然特征,
增强现实,
三维注册
Abstract: A natural feature recognition method based on machine learning is proposed for 3D registration in augmented reality application. This method increases the accuracy of key-points recognition and moves the computational burden from runtime matching to offline training by substituting specific classification for nearest-neighbor searching. Robust camera tracking and pose estimation can be obtained by the similarity of these matched key-points and the homography matrix. Experimental results demonstrate that this method is suitable for real-time application and is stable against illumination change, occlusion and perspective effect.
Key words:
machine learning,
natural feature,
augmented reality,
3D registration
中图分类号:
黄诗华, 陈一民, 陆意骏, 陈明, 姚争为. 基于机器学习的自然特征匹配方法[J]. 计算机工程, 2010, 36(20): 182-184.
HUANG Shi-Hua, CHEN Yi-Min, LIU Yi-Jun, CHEN Meng, TAO Zheng-Wei. Natural Feature Matching Method Based on Machine Learning[J]. Computer Engineering, 2010, 36(20): 182-184.