作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2011, Vol. 37 ›› Issue (24): 266-268. doi: 10.3969/j.issn.1000-3428.2011.24.089

• 开发研究与设计技术 • 上一篇    下一篇

基于TS-GA的LS-SVM参数优选?

朱红求,许 珂,阳春华   

  1. (中南大学信息科学与工程学院,长沙 410083)
  • 收稿日期:2011-05-30 出版日期:2011-12-20 发布日期:2011-12-20
  • 作者简介:朱红求(1970-),男,讲师、博士,主研方向:复杂工业过程建模与优化;许 珂,硕士研究生;阳春华,教授、博士生导师
  • 基金资助:
    国家杰出青年科学基金资助项目(61025015)

LS-SVM Parameter Optimized Selection Based on TS-GA

ZHU Hong-qiu, XU Ke, YANG Chun-hua   

  1. (School of Information Science and Engineering, Central South University, Changsha 410083, China)
  • Received:2011-05-30 Online:2011-12-20 Published:2011-12-20

摘要: 将禁忌搜索和遗传算法相结合,提出一种改进的最小二乘支持向量机(LS-SVM)参数优选方法。利用自适应遗传算法进行全局搜 索,使用禁忌搜索进行局部寻优,由此提高求解速度和解的精度。采用某冶炼厂净化工段的现场数据建立模型进行仿真实验,结果表明,该方法能使LS-SVM模型具有较好的泛化能力,模型精度满足工艺要求。

关键词: 最小二乘支持向量机, 参数优选, 遗传算法, 禁忌搜索, 预测建模

Abstract: This paper proposes an improved Least Squares Support Vector Machine(LS-SVM) parameter optimized selection method by combining Tabu Search(TS) and Genetic Algorithm(GA). Self-adaptive GA is used to search the global space and TS is used for searching the local area, so that the efficiency and precision of the solution are improved. A prediction model based on the method is established and simulated by the field data from the purification process in a smelt factory. Simulation results show that the method makes LS-SVM model have good generalization performance and high precision which can satisfy the technology requirement.

Key words: Least Squares Support Vector Machine(LS-SVM), parameter optimized selection, Genetic Algorithm(GA), Tabu Search(TS), prediction modeling

中图分类号: