[1] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. [2] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [3] REDMON J,FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2022-07-22].https://arxiv.org/abs/1804.02767. [4] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2022-07-22].https://scholar.cnki.net/zn/Detail/index/GARJ2014/DBLP6D88B9E289B257B44613EA4BE1000161. [5] SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2014:3104-3112. [6] XIONG W,DROPPO J,HUANG X,et al.Achieving human parity in conversational speech recognition[EB/OL].[2022-07-22].https://arxiv.org/abs/1610.05256. [7] ZHANG Z X,GEIGER J,POHJALAINEN J,et al.Deep learning for environmentally robust speech recognition:an overview of recent developments[J].ACM Transactions on Intelligent Systems and Technology,2018,9(5):1-28. [8] 马玉琨,毋立芳,简萌,等.一种面向人脸活体检测的对抗样本生成算法[J].软件学报,2019,30(2):469-480. MA Y K,WU L F,JIAN M,et al.Algorithm to generate adversarial examples for face-spoofing detection[J].Journal of Software,2019,30(2):469-480.(in Chinese) [9] MADRY A,MAKELOV A,SCHMIDT L,et al.Towards deep learning models resistant to adversarial attacks[EB/OL].[2022-07-22].https://arxiv.org/abs/1706.06083. [10] GUO C,RANA M,CISSE M,et al.Countering adversarial images using input transformations[EB/OL].[2022-07-22].https://arxiv.org/abs/1711.00117. [11] SAMANGOUEI P,KABKAB M,CHELLAPPA R.Defense-GAN:protecting classifiers against adversarial attacks using generative models[EB/OL].[2022-07-22].https://arxiv.org/abs/1805.06605. [12] SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[EB/OL].[2022-07-22].https://arxiv.org/abs/1312.6199. [13] GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[EB/OL].[2022-07-22].https://arxiv.org/abs/1412.6572. [14] DONG Y P,LIAO F Z,PANG T Y,et al.Boosting adversarial attacks with momentum[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:9185-9193. [15] CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//Proceedings of IEEE Symposium on Security and Privacy.Washington D.C.,USA:IEEE Press,2017:39-57. [16] BRENDEL W,RAUBER J,BETHGE M.Decision-based adversarial attacks:reliable attacks against black-box machine learning models[EB/OL].[2022-07-22].https://arxiv.org/abs/1712.04248. [17] CHEN P Y,ZHANG H,SHARMA Y,et al.ZOO:zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]//Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security.New York,USA:ACM Press,2017:15-26. [18] TU C C,TING P S,CHEN P Y,et al.AutoZOOM:autoencoder-based zeroth order optimization method for attacking black-box neural networks[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):742-749. [19] DONG Y P,SU H,WU B Y,et al.Efficient decision-based black-box adversarial attacks on face recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:7706-7714. [20] XIE C H,ZHANG Z S,ZHOU Y Y,et al.Improving transferability of adversarial examples with input diversity[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:2725-2734. [21] CHEN J Y,SU M M,SHEN S J,et al.POBA-GA:perturbation optimized black-box adversarial attacks via genetic algorithm[J].Computers & Security,2019,85:89-106. [22] KOZA J R.Automatic discovery of reusable programs[M].Cambridge,USA:MIT Press,1994 [23] ZHOU B L,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:2921-2929. [24] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:618-626. [25] SRINIVAS M,PATNAIK L M.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Transactions on Systems,Man,and Cybernetics,1994,24(4):656-667. [26] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2022-07-22].https://arxiv.org/abs/1409.1556. [27] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [28] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:2818-2826. |