作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (14): 128-131. doi: 10.3969/j.issn.1000-3428.2012.14.038

• 人工智能及识别技术 • 上一篇    下一篇

基于并行计算的无人机影像角点检测

何海清,黄声享   

  1. (武汉大学测绘学院,武汉 430079)
  • 收稿日期:2011-11-20 出版日期:2012-07-20 发布日期:2012-07-20
  • 作者简介:何海清(1983-),男,博士研究生,主研方向:无人机低空数字摄影测量;黄声享,教授、博士生导师
  • 基金资助:
    国家“863”计划基金资助项目(2009AA12Z311);中央高校基本科研业务费专项基金资助项目;精密工程与工业测量国家测绘地理信息局重点实验室基金资助项目(PF2011-11)

Corner Point Detection of Unmanned Aerial Vehicle Image Based on Parallel Computing

HE Hai-qing, HUANG Sheng-xiang   

  1. (School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China)
  • Received:2011-11-20 Online:2012-07-20 Published:2012-07-20

摘要: 无人机影像数据量通常很大,导致串行计算难以满足角点快速检测的需要。针对该问题,利用改进的Harris角点检测算法,以各图像块的标准差表征其计算量,为充分利用硬件资源,采用OpenMP进行并行编程,并优化调度策略,将循环迭代依据计算量的大小平均分配给每个线程,使各线程负载尽可能均衡,从而实现角点检测多核并行计算的最优化。实验结果表明,该方法可较大地提高无人机影像角点检测效率。

关键词: 无人机影像, 角点检测, Harris算法, 角点响应函数, 并行计算, 负载均衡

Abstract: It is difficult to accelerate corner point detection by serial computation for the Unmanned Aerial Vehicle(UAV) massive data. This paper proposes a corner point detection method of UAV image based on parallel computing. It implements the multi-core parallel computing optimization for corner point detection by OpenMP parallel programming, which schedules loop computing and iterative process into multi-thread reasonably for load balancing and optimizing scheduling strategy by computational complexity from the standard deviation of each image block. Experimental result shows that the method can improve corner point detection process speed.

Key words: Unmanned Aerial Vehicle(UAV) image, corner point detection, Harris algorithm, corner point response function, parallel computing, load balance

中图分类号: