作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (15): 194-196,200. doi: 10.3969/j.issn.1000-3428.2012.15.054

• 人工智能及识别技术 • 上一篇    下一篇

HOG在人脸识别中的性能研究

向 征1,谭恒良2,马争鸣2   

  1. (1. 广东药学院医药信息工程学院,广州 510006;2. 中山大学信息科学与技术学院,广州 510006)
  • 收稿日期:2011-09-26 出版日期:2012-08-05 发布日期:2012-08-05
  • 作者简介:向 征(1980-),男,讲师、硕士,主研方向:人工智能,图像处理,软件工程;谭恒良,博士;马争鸣,教授、博士
  • 基金资助:
    2010年度广东省教育部产学研结合基金资助项目(2010B090400013)

Performance Research of HOG in Face Recognition

XIANG Zheng 1, TAN Heng-liang 2, MA Zheng-ming 2   

  1. (1. College of Medical Information Engineering, Guangdong Pharmaceutical College, Guangzhou 510006, China; 2. College of Information Science and Technology, Sun Yat-sen University, Guangzhou 510006, China)
  • Received:2011-09-26 Online:2012-08-05 Published:2012-08-05

摘要: 介绍梯度方向直方图(HOG)人脸识别算法,设计基于脸部识别技术人脸库的HOG人脸识别实验,以测试不同HOG参数对人脸识别的影响,从而进行最优参数设置。实验结果表明,HOG特征在行人检测和人脸识别上对梯度方向空间和区间的选择是一致的,不同分块模式对人脸识别的影响与行人检测不同,HOG特征描述子用较少的特征维数就能有效地表达人脸,采用块内标准化方式后,识别性能有大幅度提升。

关键词: 梯度方向直方图, 人脸识别, 行人检测, 欧氏距离

Abstract: This paper describes the face recognition algorithm of Histograms of Oriented Gradients(HOG), and designs face recognition experiment based on HOG. The Experiment is done on the Face Recognition Technology(FERET) face database. It testes the effect of different HOG parameters on face recognition and tries to find the optimal parameter settings. Experimental results show that the choice of space and range in gradient direction of HOG feature is the same on pedestrian detection and face recognition. The different block mode has different effects too. HOG descriptor can express face effectively when it produce less characteristic dimension in non-overlapping manner. Recognition performance improves significantly when it is standardized.

Key words: Histograms of Oriented Gradients(HOG), face recognitionz, pedestrian detection, Euclidean distance

中图分类号: