[1] 张驰, 谭南林, 李国正, 等. 基于多级特征的红外图像行人检测算法[J]. 计算机工程, 2020, 46(4): 260-265. ZHANG C, TAN N L, LI G Z, et al. Pedestrian detection algorithm for infrared image based on multi-level features[J]. Computer Engineering, 2020, 46(4): 260-265.(in Chinese) [2] NGUYEN D T, LI W, OGUNBONA P O.Human detection from images and videos:a survey[J]. Pattern Recognition, 2016, 51(C): 148-175. [3] 高宗, 李少波, 陈济楠, 等. 基于YOLO网络的行人检测方法[J]. 计算机工程, 2018, 44(5): 215-219, 226. GAO Z, LI S B, CHEN J N, et al. Pedestrian detection method based on YOLO network[J]. Computer Engineering, 2018, 44(5): 215-219, 226.(in Chinese) [4] DALAL N, TRIGGS B.Histograms of oriented radients for human detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2005:886-893. [5] VIOLA P, JONES M J.Robust teal-time face detection[J]. Journal of Computer Vision, 2004, 57(2): 137-154. [6] DOLLÁR P, WOJEK C, SCHIELE B, et al. Pedestrian detection:an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34:743-761. [7] CHEN P H, LIN C J, SCHLKOPF B.A tutorial on ν-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2): 111-136. [8] FREUND Y, SCHAPIRE R E.Adecision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. [9] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. [10] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of CVPR.Washington D.C., USA:IEEE Press, 2015:779-788. [12] LU R Q, MA H M.Semantic head enhanced pedestrian detection in a crowd[EB/OL]. [2020-05-10]. https://arxiv.org/pdf/1911.11985.pdf. [13] ZHANG S, YANG X S, LIU Y X, et al. Asymmetric multi-stage CNNs for small-scale pedestrian detection[J]. Neurocomputing, 2020, 409:12-26. [14] DAI J, ZHANG P P, LU H C, et al. Dynamic imposter based online instance matching for person search[J]. Pattern Recognition, 2020, 100:45-67. [15] GE J, LUO Y, TEI G.Real-time pedestrian detection and tracking at nighttime for driver-assistance systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(2): 283-298. [16] HWANG S, PARK J, KIM N, et al. Multispectral pedestrian detection:benchmark dataset and baseline[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1037-1045. [17] WAGNER J, FISCHER V, HERMAN M, et al. Multispectral pedestrian detection using deep fusion convolutional neural networks[C]//Proceedings of European Symposium on Artificial Neural Networks.Berlin, Germany:Springer, 2016:509-514. [18] LIU J, ZHANG S, WANG S, et al. Multi-spectral deep neural networks for pedestrian detection[C]//Proceedings of British Machine Vision Conference.Berlin, Germany:Springer, 2016:1-13. [19] KONIG D, ADAM M, JARVERS C, et al. Fully convolutional region proposal networks for multispectral person detection[C]//Proceedings of Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:243-250. [20] YOLOv3:an incremental improvement[EB/OL]. [2020-05-10]. https://export.arxiv.org/pdf/1804.02767. [21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2016:770-778. [22] LIN M, CHEN Q, YAN S, et al. Network in network[EB/OL]. [2020-05-10]. https://arxiv.org/pdf/1312.4400.pdf. [23] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [24] 官大衍.可见光与长波红外图像融合的行人检测方法研究[D]. 杭州:浙江大学, 2019. GUAN D Y.Research on pedestrian detection methods via fusing visible and long-wave infrared images[D]. Hangzhou:Zhejiang University, 2019.(in Chinese) [25] LIU S, ZHANG Y.Detail-preserving underexposed image enhancement via optimal weighted multi-exposure fusion[J]. IEEE Transactions on Consumer Electronics, 2019, 45:17-35. [26] ZHANG Q, NIE Y, ZHANG L, et al. Underexposed video enhancement via perception-driven progressive fusion[J]. IEEE Transactions on Visualization & Computer Graphics, 2016, 22(6): 1773-1785. [27] RIAD I.OTCBVS benchmark dataset collection[EB/OL]. [2020-05-10]. http://vcipl-okstate.org/pbvs/bench/. |